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Short Management Summary 

The pan-European Transmission Cost Benchmarking Project1 (TCB18) was 
carried out by the Council of European Energy Regulators (CEER) through its 
consultant, Sumicsid. Sumicsid used cost and asset data provided by the 17 
participating electricity Transmission System Operators (TSOs), in addition to 
environmental and input price data from external sources, to estimate the 
relative efficiency of TSOs through data envelopment analysis (DEA). The 
TCB18 study concluded that the efficiency of participating TSOs ranges 
between 66–100%, with a mean value of 89%, indicating a total annual savings 
potential of €713m for the sample of the 17 participating TSOs. 

A consortium of all the TSOs that participated in TCB18 commissioned Oxera 
to validate and review the results from TCB18, and to recommend robust 
solutions to any issues that emerge. As part of this study, we reviewed outputs 
produced and shared with the TSOs by Sumicsid from TCB18 and had access 
to the complete underlying dataset that was used.  

Key messages 

An overarching issue with TCB18 is that Sumicsid’s outputs do not contain 
necessary information for third parties to clearly follow its analysis, validate its 
analysis or its sources without considerable effort. As such, the level of 
transparency exhibited by Sumicsid falls short of what would be considered 
regulatory good practice.  

In addition, we identified some significant issues specific to each stage of 
Sumicsid’s benchmarking analysis, which are summarised below under three 
general themes. 

1. Sumicsid’s data collection and construction process do not enable a 
sufficiently harmonised dataset to undertake robust cost 
benchmarking. 

Sumicsid states that it carried out a rigorous data collection and validation 
exercise, involving a number of iterations with independent auditors, TSOs and 
national regulatory authorities (NRAs).2 Nevertheless, TSOs have informed us 
of several data errors in the final dataset on which Sumicsid’s benchmarking 
was performed. Sumicsid did not robustly consider the impact of such errors on 
the estimated efficiencies, especially as DEA, as applied by Sumicsid, is highly 
sensitive to data errors. It is also widely recognised that ‘real’ data is noisy, 
hence such robustness checks are necessary even where the data is 
supposedly free of errors (which is not the case in TCB18). We undertook 
extensive Monte Carlo simulations to estimate the impact of data uncertainty, 
which concluded that both the classification of TSOs as efficient or otherwise, 
as well as the level of the estimated efficiencies, are sensitive to small errors in 
the data. For example, four other TSOs that are currently not identified as 
peers become peers. 

Furthermore, Sumicsid’s decision to model total expenditure (TOTEX) as a 
single input assumes a strict, one-to-one trade-off between operating 
expenditure (OPEX) and capital expenditure (CAPEX). This is inappropriate 
                                                
1 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July. 
2 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 3.2. 
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and unnecessary for several reasons, and could inappropriately conflate 
heterogeneity with inefficiency. Accounting for this type of heterogeneity 
changes the efficiency classification as well as increasing the efficiency scores 
of some TSOs by up to 17 percentage points. 

Sumicsid has not adequately adjusted for differences in input prices across 
TSOs. Specifically, Sumicsid currently adjusts only for manpower (i.e. labour) 
OPEX, which translates to approximately 5.9% of TOTEX (on average across 
TSOs) being normalised for price-level differences. No adjustment is made to 
CAPEX or other cost items within OPEX. We find that the estimated efficiency 
of some TSOs can change by up to 40 percentage points if price levels are 
better accounted for.  

2. Sumicsid’s approach to model development appears arbitrarily 
restrictive and inconsistent with the scientific literature.  

Sumicsid has not undertaken sufficient validation of its model specification (i.e. 
the relationship between TOTEX and the cost drivers identified) using 
statistical tests or other methods. For example, we find that the estimated 
model is highly sensitive to the inclusion or exclusion of specific TSOs, 
indicating that a few unusual TSOs are driving the model specification. 
Similarly, Sumicsid does not present any compelling statistical analysis to 
support key assumptions in the model development process. Moreover, 
Sumicsid has also not effectively used all the information it has at its disposal, 
and has, for example, without justification, focused on a single year’s data 
without cross-checking the impact of this.  

Sumicsid states that the asset-based measures it uses as cost drivers are 
highly correlated with TSO cost drivers, such as network capacity and routing 
complexity, but these statements are unsubstantiated in its report and 
alternatives were not considered. Moreover, where we used alternative asset-
based outputs to capture similar operating characteristics, this has a significant 
impact of up to 39 percentage points on the TSOs’ estimated efficiencies, 
emphasising the uncertainty surrounding the chosen proxies. The lack of 
alternative model specifications involving outputs (rather than asset measures) 
is a significant omission in the TCB18 study. 

Sumicsid considers NormGrid to be ‘the strongest candidate in the frontier 
models’.3 Constructed variables such as NormGrid reflect an aggregation of a 
number of classes of assets using weights that are themselves estimated with 
a degree of uncertainty. In this context, it may be more appropriate to consider 
each asset class as a separate cost driver and to allow the DEA model4 to 
determine the correct weights on each asset class. We find that replacing the 
outputs in Sumicsid’s model with the main components of NormGrid as 
separate outputs has a material impact of up to 29 percentage points on the 
estimated efficiencies of individual TSOs. 

Sumicsid’s environmental adjustment to NormGrid is not supported by 
statistical, economic or operational evidence. We could find no external 
references in Sumicsid’s outputs to support the weights it had used, nor was 
any robust statistical or operational evidence presented. Indeed, we found that 
the complexity factor weights were counterintuitive, as TSOs that operate in 

                                                
3 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 32. 
4 This can include weight restrictions if required. 
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more complex regions (as defined by Sumicsid’s complexity factor) have lower 
costs per NormGrid on average. 

3. Sumicsid has not justified the assumptions that it has made in its 
model, and its approach to model validation is incapable of detecting 
flaws or omissions in its model. 

Sumicsid makes several statements regarding statistical tests that it has 
undertaken to support its modelling assumptions, yet it does not present the 
empirical evidence in its final outputs. For example, we find no conclusive 
statistical evidence to support Sumicsid’s returns-to-scale assumption (non-
decreasing returns to scale). Alternative returns-to-scale assumptions lead to 
improvements in efficiency of up to 30 percentage points for some TSOs.  

Sumicsid has relied on the German regulatory ordinance (ARegV) for outlier 
detection. However, the outlier procedure set out in the ARegV is neither 
legally binding nor sufficient in an international benchmarking context. In 
addition, the scientific flaws of the ARegV’s outlier procedure are well known.5 
Where alternative and scientifically appropriate outlier tests are considered, we 
find that some TSOs’ estimated efficiencies are underestimated by up to 17%. 

As part of its validation procedure, Sumicsid uses regression analysis involving 
the estimated efficiency scores from DEA and potentially omitted cost drivers. 
However, there is no theoretical basis to support this validation approach to 
identify omitted outputs.6 Moreover, we show that Sumicsid’s own model will 
not be supported by its validation approach. Thus, Sumicsid has not 
demonstrated that no relevant variables were omitted from its sole model. 

Sumicsid has not examined whether the DEA outputs are consistent with 
economic and operational expectations. For example, Sumicsid states that 
NormGrid is the primary driver of expenditure, yet most TSOs’ efficiency 
scores are not primarily driven by NormGrid. Furthermore, Sumicsid has not 
examined whether the peers for the inefficient TSOs, and how they are scaled, 
are appropriate. Indeed, we find that some TSOs are being compared against 
peers that are up to 12 times smaller.  

Importantly, Sumicsid has not cross-checked the results of its analysis using 
well-established alternative methods such as stochastic frontier analysis (SFA), 
despite having a panel of data available.7 SFA applied to Sumicsid’s model and 
dataset suggests that there is no statistically significant inefficiency among the 
TSOs. The SFA model not finding statistically significant inefficiency is not a 
reason to use DEA; rather, it suggests that caution is warranted against 
interpreting any estimated inefficiency in the DEA as actual inefficiency rather 
than statistical noise, and/or that the model specification should be re-
examined. 

Finally, dynamic efficiency analysis casts further doubt on the validity of 
Sumicsid’s model and dataset. For example, DEA indicates a frontier regress 

                                                
5 For example, see discussion in Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2018), ‘Validity of 
Bundesnetzagentur’s dominance test for outlier analysis under Data Envelopment Analysis’, August; 
Deuchert, E. and Parthasarathy, S. (2018–19), five-part series of articles on the German energy regulator’s 
benchmarking framework covering efficiency methods (DEA and SFA), functional form assumptions, cost 
driver analysis, outlier analysis and model validation, ew–Magazin für die Energiewirtschaft. 
6 For example, see discussion in Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2018), ‘Validity of 
Bundesnetzagentur’s cost driver analysis and second-stage analysis in its efficiency benchmarking 
approach’, February. 
7 A panel dataset contains data over time across TSOs and thus contains more information than a single 
year of data. 
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of 4% p.a.8 Moreover, the frontier shift using SFA is estimated over a wide 
confidence interval and is statistically indifferent from zero (consistent with the 
conclusion of the individual inefficiency estimates). Such a volatile, large and 
negative frontier shift result is indication that Sumicsid’s model cannot capture 
changes in costs over time. If the model cannot capture changes in efficient 
costs over time, then it is unlikely that the model can capture differences in 
efficient costs between TSOs.  

Conclusion of our review of TCB18 

International benchmarking can be a powerful tool for companies and 
regulators to assess the efficiency of network operators. This is especially true 
in the context of the electricity transmission industry, where the sector is often 
characterised by national monopolies, thus making national benchmarking 
challenging. In this sense, we welcome projects such as TCB18, which have 
attempted to develop a framework for periodic assessment of TSOs. 

Nevertheless, the TCB18 study itself suffers from a number of significant 
flaws, some of which are fundamental. These flaws mean that the estimated 
efficiency scores and suggested cost savings are not robust and thus cannot 
be used in their current form for regulatory, operational or valuations 
purposes.  

Some of these weaknesses, such as consistency in reporting guidelines, are 
partly driven by the lack of maturity in the international benchmarking process, 
and we expect this to improve with time. However, Sumicsid’s concluding 
remarks are concerning, as they are not consistent with the significant issues 
and areas for future work identified through our comprehensive review. For 
example:  

Regulatory benchmarking has reached a certain maturity through this process 
and model development, signaling both procedural and numerical robustness 
[…]  

[…] future work can be directed towards further refinement of the activity scope 
and the interpretation of the results, rather than on the model development. 

By incorporating the recommendations presented in this report, we consider 
that CEER will be better able to develop a process and methodology for 
international cost benchmarking that are informative and fit for purpose. In this 
regard, it can also be helpful to consider debriefs involving all the parties on 
process and methodology to help future studies.  

                                                
8 Sumicsid published the results of the dynamic efficiency analysis after the finalisation of this report. See 
Sumicsid (2020), ‘Dynamic efficiency and productivity changes for electricity transmission system operators’, 
April. 
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Long-form Executive Summary 

Background 

The pan-European Transmission Cost Benchmarking Project9 (TCB18) was 
carried out by the Council of European Energy Regulators (CEER) through its 
consultant, Sumicsid. It is a follow-up to previous studies, such as ECOM+10, 
e3grid201211 and e3grid2008.12 

The TCB18 study involved an international comparison of 17 electricity TSOs 
based in 15 European countries. Sumicsid used cost and asset data provided 
by TSOs, in addition to environmental and price-level data from external 
sources, to assess the relative efficiency of TSOs. As in previous 
benchmarking exercises, Sumicsid used data envelopment analysis (DEA) to 
estimate the efficiency of the European electricity TSOs.  

A consortium of all the European TSOs that participated in TCB1813 
commissioned Oxera to validate and review the results from TCB18, and to 
recommend robust solutions to any issues that emerge. 

We understand that the results from TCB18 could be used by some national 
regulatory authorities (NRAs) as evidence to set regulatory revenues for the 
TSOs concerned. Hence, it is essential that the limitations of Sumicsid’s 
analysis are fully understood.  

Assessment 

As part of this study, we have reviewed a number of outputs, including: 

• the final report and appendices as published by Sumicsid, which are 
available on CEER’s website;14, 15  

• the TSO-specific outputs that detail individual TSOs’ data and 
performance;16  

• workshop slides that Sumicsid shared with the TSOs through the course of 
the TCB18 project.17  

We also received the final underlying dataset from the TSOs as used by 
Sumicsid in its analysis. We have used this dataset to validate Sumicsid’s 
work. It should be noted that Sumicsid’s outputs do not contain the necessary 

                                                
9 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July. 
10 Sumicsid (2006), ‘ECOM+ Results 2005 FINAL REPORT’, June 
11 Sumicsid, Frontier Economics, Consentec (2013), ‘E3GRID2012 – European TSO Benchmarking Study A 
REPORT FOR EUROPEAN REGULATORS’, July 
12 Sumicsid (2009), ‘International Benchmarking of Electricity Transmission System Operators e 3GRID 
PROJECT – FINAL REPORT’, September 
13 A full list of the participating TSOs can be found in Sumicsid (2019), ‘Pan-European cost-efficiency 
benchmark for electricity transmission system operators main report’, July, Table 2-2. 
14 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July. 
15 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
appendix’, July. 
16 These are generally not publicly available. However, Fingrid has published its report online and we will 
reference this report where appropriate. See Sumicsid (2019), ‘Project TCB18 Individual Benchmarking 
Report Fingrid – 131’, July, found here 
https://energiavirasto.fi/documents/11120570/12862527/tcb18_indrep_final_elec_131_FI+%28Fingrid+Oyj%
29.pdf/cda330f6-ea39-a345-3e8b-cf4c1170522a/tcb18_indrep_final_elec_131_FI+%28Fingrid+Oyj%29.pdf, 
last accessed 31 January 2020. 
17 See Sumicsid (2019), ‘Model Specification Model Results’, April; Sumicsid (2018), ‘Validation of NormGrid 
and Preliminary Environmental Results’, November; Sumicsid (2019), ‘CEER-TCB18 project Model 
Specification ELEC V1.3’, February. 

https://energiavirasto.fi/documents/11120570/12862527/tcb18_indrep_final_elec_131_FI+%28Fingrid+Oyj%29.pdf/cda330f6-ea39-a345-3e8b-cf4c1170522a/tcb18_indrep_final_elec_131_FI+%28Fingrid+Oyj%29.pdf
https://energiavirasto.fi/documents/11120570/12862527/tcb18_indrep_final_elec_131_FI+%28Fingrid+Oyj%29.pdf/cda330f6-ea39-a345-3e8b-cf4c1170522a/tcb18_indrep_final_elec_131_FI+%28Fingrid+Oyj%29.pdf
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information for third parties to clearly follow its analysis, validate its analysis or 
validate its sources without considerable effort. In our replication, small 
deviations in some of the associated outputs presented by Sumicsid exist due 
to the lack of information provided by Sumicsid in its various outputs. The level 
of transparency exhibited by Sumicsid in the project falls short of what would 
be considered good practice.  

Nevertheless, our replication was close enough for us to identify issues and 
conclude on the quality of the benchmarking. In fact, we have identified a 
number of significant issues with Sumicsid’s analysis; these can be 
summarised under three themes, as follows. 

1. Sumicsid’s data collection and construction process do not enable a 
sufficiently harmonised dataset to undertake robust cost 
benchmarking. 

Sumicsid states that it carried out a rigorous data-collection exercise involving 
a number of iterations with independent auditors, TSOs and national regulatory 
authorities (NRAs).18 In theory, its procedure should produce a relatively robust 
dataset for benchmarking purposes. However, despite such a lengthy, iterative 
process, we have identified several issues with the dataset that Sumicsid used 
in its analysis. Furthermore, the adjustments that Sumicsid makes to the data 
are insufficient and not adequately justified. 

i. Sumicsid has not adequately ensured that the final dataset is free from 
significant data errors and inconsistencies 

TSOs have informed us of several data errors in the final dataset—for 
example, miscommunication regarding the reporting guidelines, leading to 
misreporting of data, and measurement error. For example, some TSOs 
aggregated their data for towers in a way that indicated that they have no 
angular towers (thus understating the weighted lines variable by 100%). This 
would clearly underestimate the level of output for these TSOs, and bias the 
resulting efficiency scores.  

As part of our assessment, we had to take the data collated and processed by 
Sumicsid largely as given and could only make specific changes for particular 
TSOs (i.e. we were not able to tackle systematic or pervasive errors). 
However, we illustrate the impact of data errors and data uncertainty on the 
estimated efficiency scores of each TSO through Monte Carlo simulations, 
which have been considered by regulators in international and national 
benchmarking exercises.19 The analysis indicates that most TSOs’ efficiency 
scores are highly sensitive to possible errors in the data. For example, four 
TSOs that are estimated to be inefficient in Sumicsid’s analysis have a 100% 
efficiency score in at least 5% of the simulations.20 This demonstrates that, 
based on data uncertainty alone (i.e. ignoring all of the modelling flaws in 
Sumicsid’s analysis), Sumicsid’s analysis is not able to robustly identify 

                                                
18 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 3.2. 
19 Specifically, we assume that the actual value of a variable is the measured value plus an error. This error 
is assumed to be uniformly distributed and +/- 10% of the observed value of a variable (the level of error, 
while conservative, is informed by the scale of errors noted by the participating TSOs and can also be 
informed by the standard error of the cost drivers from the regression model). We re-estimate Sumicsid’s 
model 1,000 times with a different error each time, and this creates the distribution of inefficiency scores. 
20 In this context, we focus on a right tailed test where the estimated efficiencies from the simulations are 
sorted in ascending order. We focus on the 95th percentile of this ordered sequence of scores to see if a 
TSO deemed inefficient under Sumicsid’s analysis is estimated to be 100% efficiency because of data errors 
in at least 5% of the simulations. 
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efficient and inefficient TSOs, nor robustly estimate the level of inefficiency 
present in the TSOs.  

ii. Sumicsid’s choice of input variable does not appropriately capture the 
trade-off between different types of expenditure 

Sumicsid models expenditure on a total expenditure (TOTEX) basis, where 
TOTEX is the sum of operating expenditure (OPEX) and capital expenditure 
(CAPEX). This implicitly assumes that there is a one-to-one trade-off between 
OPEX and CAPEX. However, OPEX and CAPEX are calculated differently 
(and are not strictly a measure of a TSO’s TOTEX in a year) and subject to 
different normalisations21 that may limit the extent to which the two types of 
expenditure are comparable. If TSO’s have different ratios of OPEX to CAPEX 
dictated by national regulatory and legislative frameworks and operational 
characteristics, TOTEX modelling, as considered by Sumicsid, could 
inappropriately conflate TSO heterogeneity with inefficiency.  

There are several methods to account for this heterogeneity, none of which 
has been properly examined by Sumicsid. For example, OPEX and CAPEX 
can be kept as separate inputs in the DEA model; this ensures that TSOs are 
only benchmarked against peers with similar OPEX to CAPEX ratios, and 
mitigates the risk that a TSO is benchmarked against a peer with a very 
different cost structure. Alternative approaches include developing separate 
models (econometrically or through DEA) for OPEX and CAPEX, while 
recognising the trade-offs between the two and without imposing unnecessary 
assumptions.  

Accounting for the heterogeneity in the expenditure categories by modelling 
OPEX and CAPEX as two distinct inputs leads to two previously inefficient 
TSOs becoming peers, and swings in estimated efficiency as large as 17 
percentage points for some TSOs. 

iii. Sumicsid has not sufficiently accounted for differences in input prices 
across TSOs 

Sumicsid adjusts only for manpower (i.e. labour) OPEX by an index of civil 
engineering price levels to account for differences in input prices across TSOs. 
This translates to approximately 5.9% of TOTEX (on average across TSOs) 
being normalised for price-level differences. No adjustment is made to CAPEX 
or other cost items within OPEX. This approach raises a number of issues, 
each of which can significantly affect TSOs’ estimated efficiency. 

• The civil engineering price-level index (PLI) contains prices for non-labour 
inputs (such as raw materials like metals, plastics and concrete). Its 
application to labour costs is therefore insufficiently substantiated.  

• Sumicsid has limited the scope of the adjustment to a specific cost line 
within OPEX. In reality, a significant proportion of CAPEX is driven by labour 
or labour-related costs.  

• The differences in non-labour input prices, such as raw materials (which 
would impact both OPEX and CAPEX), are not accounted for at all. 

In our view, based on discussions with the TSOs, one option would be to 
adjust all OPEX with the price level index (PLI) for overall GDP and to adjust all 

                                                
21 For example, OPEX is calculated on an annual basis and is adjusted for differences in labour input prices. 
CAPEX, on the other hand, is calculated as the sum of annuities in specific investments, and no adjustment 
is made for differences in input prices. 
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CAPEX with the PLI for civil engineering, as has been considered in other 
international benchmarking applications.  

Most of the TSOs’ efficiency scores are highly sensitive to the method of 
indexation (such as the choice of PLI and the proportion of expenditure 
adjusted), and any adjustment (or lack thereof) requires careful consideration 
and a robust justification.  

The impact of price levels on estimated efficiencies can be as large as 40 
percentage points, with the estimated efficiency of one TSO increasing by 16 
percentage points.  

iv. Sumicsid’s allocation of indirect costs to assessed OPEX is arbitrary, 
and evidence supporting its allocation rule is not presented in the report 

Sumicsid allocated indirect costs (e.g. human resources expenditure, IT 
support) to activities considered within the scope of benchmarking based on 
unsubstantiated allocation rules. Specifically, Sumicsid allocates indirect 
expenditure to activities based on the percentage of OPEX (minus energy 
costs and depreciation) in that activity. Large, uncontrollable cost items that are 
unrelated to indirect expenditure (such as taxes and levies) can have a 
significant impact on the amount of expenditure allocated to in-scope activities.  

We recommend amending the allocation rule to exclude all costs that are 
considered outside of the scope of benchmarking. This mitigates the risk that 
indirect expenditure is arbitrarily allocated to activities based on cost items that 
are unrelated to indirect expenditure. While the impact of this adjustment is 
material for only one TSO in Sumicsid’s model, the allocation of indirect 
expenditure is an important conceptual issue; it can have a material impact in 
alternative model specifications and methods that Sumicsid has overlooked. 
Consideration of the allocation rule would clearly be important for future 
iterations of the benchmarking study. 

2. Sumicsid’s approach to model development appears arbitrarily 
restrictive and inconsistent with the scientific literature. 

A robust model-development process is necessary to ensure that the results 
from an empirical investigation are robust. This process should take into 
account operational and economic rationale for including or excluding specific 
cost drivers and should be supported by statistical analysis and operational 
evidence. Sumicsid’s model-development process is not clearly presented in 
any of its outputs, nor does it consistently follow scientific best practice.  

i. Sumicsid’s cost driver analysis is not transparent and is based on 
assumptions that have not been validated in the current context 

Sumicsid uses a combination of OLS regression (with and without outliers) and 
‘robust OLS’ (ROLS) regression to validate the relationship between costs and 
cost drivers (asset-based measures, in this case). Sumicsid does not present 
analysis behind its model-development process in its final reports,22 but it does 
present the coefficients of an ROLS regression on its final model in the TSO-
specific outputs.23  

                                                
22 Some alternative models are presented in workshops throughout the TCB18 study. However, the final 
model was not justified in these workshops. 
23 Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, Table 3.1. 
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Given this lack of transparency, we cannot validate the econometric analysis 
that Sumicsid presents in its report. Nonetheless, we have identified several 
flaws that undermine the robustness of Sumicsid’s analysis. 

• It is well established that the assumptions required for OLS estimators to 
provide valid statistical inference are not met if inefficiency (i.e. systematic 
deviation) is present in the dataset. In the present case, Sumicsid has 
concluded that about 10% of inefficiency is present (i.e. systematic 
deviations are present) on average across the TSOs.24 Therefore, any 
comment regarding the statistical significance of coefficients in the first 
stage regression model is not conclusive. 

• The estimated coefficients in the final model are highly sensitive to the 
exclusion of certain TSOs, indicating that a few unusual TSOs may be 
driving the observed relationship between costs and cost drivers.25 Sumicsid 
does not appear to consider such essential robustness checks.  

• The estimated efficiency scores in the sample are highly sensitive to the 
year in which efficiency is assessed. This could indicate that the model is 
not able to explain changes in expenditure over time (the dynamic efficiency 
estimates on Sumicsid’s model are also highly volatile). For example, the 
impact of the investment cycle may not be fully captured by Sumicsid’s data 
and modelling adjustments, and the estimated efficiency of TSOs may 
therefore be influenced by their relative position in the investment cycle.  

• Sumicsid’s functional form assumption (i.e. a linear relationship between 
costs and cost drivers) dictating the model specification is not substantiated 
by statistical analysis. For example, a non-linear relationship between costs 
and cost drivers can result in alternative cost drivers being identified as 
relevant. Sumicsid has not presented sufficient evidence to validate its 
assumptions, nor has it considered the impact of alternative assumptions.  

• Sumicsid does not present sufficient detail of the analysis it has used to 
develop its final model in the main report or appendices. Furthermore, 
Sumicsid has not shared modelling codes with the TCB18 participants 
(which could have been anonymous, avoiding any confidentiality issues). As 
such, the exact process that Sumicsid used to develop its models is not 
open to allow for third parties to understand the process followed or the 
results. In this regard, a sample of our modelling code that replicates parts 
of Sumicsid’s analysis is available in Appendix A1 for reference. 

As a result of these modelling flaws, it is unlikely that Sumicsid’s model 
development procedure has led to an appropriate final model from which 
unbiased efficiency scores could be estimated.  

ii. Sumicsid has restricted itself to the use of asset-based measures of 
output, without providing empirical justifications for doing so 

All of the ‘outputs’ used in Sumicsid’s final model (NormGrid, transformer 
power and weighted lines) are measures of assets (i.e. inputs). Indeed, 
Sumicsid does not present any sensitivity where outputs (such as variability of 
network supply and total energy transmitted) are used. Using asset-based 
measures instead of outputs could bias the efficiency assessment in favour of 
TSOs that choose asset-based solutions. It is also unusual to solely focus on 
models where the cost drivers are asset-based measures, as the interpretation 

                                                
24 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, Table 5-4. 
25 For this robustness assessment, we are using ‘robust OLS’, the same method as used by Sumicsid. 
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of the regression outputs from such an input–input model would be unclear (as 
cost (i.e. TOTEX) is equated with other measures of cost (i.e. assets), resulting 
in a tautological relationship).  

Sumicsid states that the asset-based measures are highly correlated with 
outputs, such as network capacity and routing complexity. However, Sumicsid 
has not substantiated these statements with statistical analysis or operational 
evidence and alternative outputs were not considered. For example, we 
observe that using alternative, asset-based measures to capture the same 
operating characteristics has a significant impact of up to 39 percentage points 
on the TSOs’ estimated efficiency scores; this emphasises the uncertainty 
surrounding these proxies. The lack of alternative model specifications 
involving outputs is a significant omission in the TCB18 study. 

iii. The weights attached to each asset class when aggregating to a 
NormGrid measure are not robustly validated 

Sumicsid considers NormGrid to be ‘the strongest candidate in the frontier 
models’.26 Constructed variables such as NormGrid carry an inherent risk of 
favouring some TSOs at the expense of others; this is because such variables 
reflect an aggregation of a number of classes of assets using weights that are 
themselves estimated with a degree of uncertainty. Depending on the weights 
used and the mix of assets of each type that a TSO uses in reality, a TSO may 
be favoured or disadvantaged relative to other TSOs that differ substantially on 
the mix of assets. The weights used in the aggregation of NormGrid should 
therefore be robustly justified. 

Sumicsid states that it used linear regression to derive the appropriate OPEX 
and CAPEX weights on NormGrid.27 The results of this regression analysis are 
not presented in any of Sumicsid’s outputs. Furthermore, we are unable to 
validate the weights that Sumicsid used when we conduct similar regression 
analysis—that is, the coefficients of the regression analysis did not match the 
weights used by Sumicsid. Changing the weights used to aggregate asset 
classes to those implied by our regression analysis has a positive impact of up 
to 8 percentage points on one of the TSOs in Sumicsid’s model. 

Deriving weights based on regression analysis relies on parametric 
assumptions that are inconsistent with the non-parametric nature of DEA. In 
this context, it may be more appropriate to consider each asset class as a 
separate output and to allow the DEA model (if required with weight 
restrictions) to determine the correct weights on each asset class.  

We find that replacing the outputs in Sumicsid’s model with the four largest 
components of NormGrid has a material impact of up to 29 percentage points 
on the estimated efficiency of individual TSOs. 

iv. The environmental adjustment to NormGrid is not supported by 
statistical evidence 

To account for exogenous environmental factors, Sumicsid adjusts the 
NormGrid measure with an ‘environmental complexity factor’. This complexity 
factor is based on the land-use characteristics of the area served by the TSOs 
(for example, the proportion of service area that is urban). Sumicsid presents 
the weights it uses to adjust NormGrid in one of the workshops (the W5 

                                                
26 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 32. 
27 Sumicsid (2019), ‘Norm Grid Development’, February, p. 2.  
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workshop),28 but it does not provide evidence to support the values of the 
weights.  

Our analysis of the environmental adjustment indicates a negative relationship 
between unit costs (defined as unadjusted TOTEX per NormGrid) and the 
environmental complexity factor—that is, TSOs that operate in more complex 
environmental conditions (as defined by the environmental complexity factor) 
have a lower unit cost. This counterintuitive relationship may be partially 
explained by the way in which the environmental complexity factor is 
constructed. In particular, the percentage of service area covered by forests is 
the land-use characteristic that has the biggest impact on the overall 
complexity factor for most TSOs. Also, factors that may be more operationally 
intuitive drivers of expenditure (such as urbanity or mountainous areas) have a 
low impact on the overall complexity factor. 

3. Sumicsid has not justified the assumptions that it has made in its 
model, and its approach to model validation is incapable of detecting 
flaws or omissions in its model. 

For the results from any benchmarking model to be considered reliable, the 
assumptions of the model must be justified and the model itself must be 
robustly validated. Sumicsid makes several claims regarding the statistical 
tests that it has undertaken to support its modelling assumptions, yet it does 
not present the empirical evidence in its final outputs.  

i. Sumicsid’s returns-to-scale assumption is not supported by statistical 
evidence 

One of the key assumptions in DEA relates to the specification of the returns-
to-scale assumption. Sumicsid has assumed a ‘non-decreasing returns to 
scale’ (NDRS) technology when estimating TSOs’ efficiency scores, and it 
states that this is supported by statistical evidence. However, this statistical 
evidence is not reported in the outputs. 

In our replication of Sumicsid’s tests, we do not find conclusive evidence 
supporting the NDRS assumption in the final model. Analysis of the estimated 
efficiency scores in the DEA model indicates that a ‘variable returns to scale’ 
(VRS) assumption may fit the data more appropriately.  

If the model is estimated using the variable returns-to-scale assumption, four 
additional TSOs become peers, increasing their estimated efficiency by up to 
30 percentage points, while two TSOs that are peers in Sumicsid’s analysis 
become inefficient. 

ii. Sumicsid’s outlier procedure is not justified in its report and is 
scientifically inadequate 

Sumicsid has relied on German regulatory precedent to detect outliers. 
Specifically, Sumicsid has performed dominance and super-efficiency tests 
based on the Bundesnetzagentur’s approach to outlier detection, as outlined in 
the Incentive Regulation Ordinance (ARegV). The decision to follow the outlier 
procedure specified in the ARegV is not justified, nor is the outlier procedure 
likely to be sufficient in an international benchmarking context.  

We recommend the following amendments to Sumicsid’s outlier procedure. 

                                                
28 Sumicsid (2019), ‘Model Specification Model Results’, April, slide 55. 
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• Dominance test. Following the recommendations of Kumbhakar, 
Parthasarathy and Thanassoulis (2018) 29 in their expert opinion on 
Sumicsid’s dominance test, we apply a ‘bootstrap-based test’ for dominant 
TSOs. Sumicsid’s dominance test has no theoretical foundation in the 
context of outlier analysis. The bootstrap-based test provides a robust 
foundation as it is a non-parametric test consistent with DEA and can better 
take the specific context (i.e. outlier analysis) into account. In the current 
case, the bootstrap test identifies one additional outlier, improving average 
efficiency across the sample by 2 percentage points. 

• Super-efficiency test. Consistent with the recommendations in Deuchert 
and Parthasarathy (2019)30 and Thanassoulis (1999),31 we apply the super-
efficiency test iteratively until no more super-efficient outliers are identified. 
This modification increases the number of detected outliers by three and 
results in a more homogenous sample on which DEA can be performed. In 
the current case the iterative application of the super-efficiency test 
identifies three additional outliers, improving average efficiency across the 
sample by 3 percentage points. 

There are further issues with these tests that are not addressed with these 
amendments. We also note that outlier procedure is not a replacement for 
robust data collection, validation and model-development process. 

iii. Sumicsid’s second-stage analysis is incapable of detecting omitted 
cost drivers and does not support the final model 

In order to test whether relevant drivers of expenditure have been omitted from 
the final model specification, Sumicsid uses regression analysis involving the 
estimated efficiency scores and the omitted cost drivers.  

As noted in Kumbhakar, Parthasarathy and Thanassoulis (2017),32 we are not 
aware of any academic literature supporting the use of second-stage 
regressions to assess the relevance of omitted outputs in a DEA model. In 
addition, the use of second-stage analysis requires assumptions that need to 
be justified, and Sumicsid has not presented such justification in its output. 

We demonstrate that Sumicsid’s second-stage analysis is unable to validate its 
own model specification. To show this, we estimate efficiency scores in a 
model controlling for two of the three cost drivers used in the final model, and 
we use Sumicsid’s second-stage approach to test whether Sumicsid’s third 
cost driver is deemed ‘omitted’ or not. We find that Sumicsid’s approach only 
identifies transformer power, and not NormGrid, weighted lines or the 
environmental adjustment, as a relevant omitted variable. Thus Sumicsid has 
not demonstrated that there are no relevant variables omitted in its sole model. 

                                                
29 Given the non-applicability of the ARegV in the current context, as noted in Kumbhakar, Parthasarathy and 
Thanassoulis (2019),29 the test can be easily amended to improve on its discriminatory power. See 
Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2018), ‘Validity of Bundesnetzagentur’s dominance 
test for outlier analysis under Data Envelopment Analysis’, August. 
30 Deuchert, E. and Parthasarathy, S. (2018–19), five-part series of articles on the German energy 
regulator’s benchmarking framework covering efficiency methods (DEA and SFA), functional form 
assumptions, cost driver analysis, outlier analysis and model validation, ew–Magazin für die 
Energiewirtschaft. 
31 Thanassoulis, E, (1999) ‘Setting Achievement Targets for School Children’, Education Economics, 7:2, pp. 
101–19.  
32 For example, see discussion in Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2018), ‘Validity of 
Bundesnetzagentur’s cost driver analysis and second-stage analysis in its efficiency benchmarking 
approach’, February. 
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iv. Sumicsid has not examined whether the DEA outputs are consistent 
with operational expectations 

Sumicsid has not validated the outputs from its DEA modelling. For example, 
DEA weights can be used to assess the importance of each cost driver in 
determining a TSO’s efficiency. Sumicsid states that such weights can be used 
to identify potential data errors,33 but it does not present any analysis of DEA 
weights in its final outputs. Sumicsid has not ensured that the DEA outputs are 
operationally intuitive and valid for the TSOs. This is necessary to show that 
that method is appropriate for the dataset and model. 

Furthermore, Sumicsid makes statements regarding the importance of each 
cost driver that are not supported by empirical evidence. For example, 
Sumicsid states that environmentally adjusted NormGrid is the primary driver 
of expenditure in its DEA model, yet four TSOs’ efficiency scores are not 
determined by NormGrid at all (i.e. NormGrid has zero weight) and a further six 
TSOs do not have NormGrid as the main driver of efficiency (i.e. NormGrid has 
less than 33% weight). If the ex ante expectation is that adjusted NormGrid is 
the primary driver of costs, then this analysis of DEA weights is concerning and 
could indicate data errors or model mis-specification.  

Moreover, each inefficient unit will have its corresponding set of efficient peers 
scaled up or down to provide an efficient benchmark. Sumicsid has not 
presented any discussion of whether the identified peers and their weights as 
estimated by its model are appropriate. Indeed, we find evidence that 
inefficient TSOs are being benchmarked against peers that are up to 12 times 
smaller, and thus are not necessarily comparable. There are other instances of 
such unusual scaling factors that have not been validated by Sumicsid.  

v. Sumicsid has not cross-checked the results of its analysis using 
alternative methods 

The results from DEA are contingent on certain assumptions imposed on the 
model (and clearly on the underlying dataset) that have not been sufficiently 
justified by Sumicsid. Moreover, Sumicsid’s application of DEA is deterministic 
and unable to account for data errors or modelling uncertainty. Because of this, 
alternative benchmarking techniques such as stochastic frontier analysis 
(SFA)34 should be used as a cross-check to the DEA results, alongside 
operational evidence. 

In its main report, Sumicsid acknowledges SFA as a valid tool for efficiency 
benchmarking, but states that the sample size was too small to allow for ‘a full 
scale application of SFA as a main instrument’.35 However, the appropriate 
sample size is an empirical question, applies to all empirical methods, and 
cannot be decided ex ante—there is no fixed rule as to how many observations 
a model needs for the analysis to be robust. SFA has been performed on 

                                                
33 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 30. 
34 SFA is an econometric approach to benchmarking regulated companies. For a more detailed discussion 
on SFA, see Kumbhakar, S. and Knox Lovell, C.A. (2000), Stochastic Frontier Analysis, Cambridge 
University Press, Kumbhakar, S.C, Wang, H-J and Horncastle, A. P. (2015), A Practitioner’s Guide to 
Stochastic Frontier Analysis Using STATA, Cambridge University Press, and Deuchert, E. and 
Parthasarathy, S. (2018–19), five-part series of articles on the German energy regulator’s benchmarking 
framework covering efficiency methods (DEA and SFA), functional form assumptions, cost driver analysis, 
outlier analysis and model validation, ew–Magazin für die Energiewirtschaft. 
35 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 29. 
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smaller samples in regulatory context36 and Sumicsid had access to a panel 
dataset.37 Equally, Sumicsid should have validated the outputs from DEA (e.g. 
peers and weights) to show that the method was appropriate for the dataset, 
but it has not.  

As a general related observation, we note that despite deriving its model on a 
panel dataset (i.e. data over time across TSOs), Sumicsid has not effectively 
used all the information that it has at its disposal. Instead, it has—without 
justification—focused on a single year’s data for estimating the TSOs’ 
efficiency levels. 

We have managed to apply SFA on Sumicsid’s model on a cross-sectional 
basis, as well as on a panel basis. In our estimation of SFA models, we find 
that the estimated inefficiency in the sample is statistically insignificant; that is, 
the data used by Sumicsid is consistent with there being no statistically 
significant inefficiency among the TSOs, with the deviations due to statistical 
noise being potentially identified as inefficiency by the DEA model. The SFA 
model not finding statistically significant inefficiency is not a reason to use 
DEA; rather, it suggests caution is warranted against interpreting any 
estimated inefficiency in the DEA as actual inefficiency rather than statistical 
noise, and/or that the model specification should be re-examined.  

vi. Dynamic efficiency (frontier shift) analysis casts additional doubt on 
the validity of the data and model 

Dynamic efficiency relates to the ability of the most efficient companies in an 
industry to improve productivity. Despite discussing dynamic efficiency results 
in one workshop,38 Sumicsid has not presented any relevant analysis in the 
final outputs. On Sumicsid’s final model, DEA indicates that there has been a 
frontier regress of 4% p.a.39 That is, efficient costs have been increasing at a 
rate of 4% p.a. over the period of assessment (i.e. 2013–17). When applying 
SFA on the same model, we estimate a similar rate of frontier shift, although it 
is statistically indifferent from zero (consistent with the conclusion of the 
individual inefficiency estimates).  

Such a large and negative frontier shift result is unusual when compared with 
what is commonly estimated in regulatory settings, and this could indicate that 
Sumicsid’s model cannot capture changes in costs over time—for example, 
relevant cost drivers that control for the position of a TSO in the investment 
cycle (such as asset health) are missing.  

This is concerning; if the model cannot capture changes in efficient costs over 
time, then it is likely that the model cannot capture differences in efficient costs 
between TSOs.  

The volatility in expenditure that is not captured by changes in the cost drivers 
is further evidence that the data is measured with a high level of uncertainty. 
For this reason, the resulting efficiency scores are likely to be estimated with a 
large degree of uncertainty; while DEA, as applied by Sumicsid, does not 
provide information on uncertainty surrounding the estimated efficiencies, this 

                                                
36 E.g. the Office for Rail and Road (ORR) performed SFA on a sample of 50 observations for its 
determination of the efficiency of Network Rail as part of the PR18 price control. Office of Rail and Road 
(2018), ‘PR18 Econometric top-down benchmarking of Network Rail A report’, July 
37 A cross sectional dataset contains one observation per unit (i.e. TSO) for one year. A panel dataset 
contains data over time across TSOs 
38 See Sumicsid (2019), ‘Model Specification Model Results’, April, slide 81. 
39 Sumicsid has now published the results of the dynamic efficiency analysis after the finalisation of this 
report. See Sumicsid (2020), ‘Dynamic efficiency and productivity changes for electricity transmission system 
operators’, April. 
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uncertainty must be accounted for in some way (for example, through Monte 
Carlo simulations or SFA) if the subsequent scores are to inform regulatory or 
operational or valuations applications. 

Summary of our assessment 

The table below summarises the impact of the individual adjustments we 
suggest under the three themes described above. Our recommendations are 
principles-driven and consistent with the scientific literature, and they can 
therefore result in a decrease or increase in the estimated efficiency of a TSO 
in a particular sensitivity.  

We have not presented the combined results, in which all our 
recommendations are jointly implemented, as we have identified numerous 
fundamental issues with Sumicsid’s analysis. Further, given the unreliable 
nature of the data and the overarching conclusion from SFA that the data is too 
noisy, we have not developed alternative model specifications with outputs as 
cost drivers. 

The TCB18 study suffers from a number of fundamental weaknesses that 
mean that the estimated efficiency scores cannot be used for regulatory, 
operational or valuations purposes in their current form. We have 
outlined a number of recommendations to be considered at each step of 
Sumicsid’s analysis. These require significant additional work to ensure 
that the outcomes from the TCB18 are robust and fit for purpose. 
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Summary of our assessment 

 
 

Issues in the TCB18 study Specific empirical impact Wider modelling implications 
Report 
section  

Data collection 
and 
construction 

Data errors 
Monte Carlo simulation indicates that four inefficient TSOs 
become efficient at the 90% significance level. The widest 
confidence interval is 48 percentage points. 

Data errors will have an impact at all stages of the 
benchmarking, including model development. 

3.1 

Defining the input 
variable 

In a two-input model, one efficient TSO becomes inefficient 
and two inefficient TSOs become efficient. Alternative options 
exist and need to be explored. 

The modelling implies the relationship between OPEX and 
CAPEX assumed by Sumicsid is restrictive and that alternative 
models must be explored. 

3.2 

Adjusting for input 
prices 

The impact of our preferred PLI adjustment on TSOs’ 
efficiency is in the range of -34–16 percentage points. 

Most TSOs’ efficiencies are highly sensitive to the method of 
adjustment, highlighting the importance of the adjustment and 
the need for sensitivity analysis. 

3.3 

Indirect cost 
allocation 

One TSO reduces its efficiency by 18 percentage points.  
The allocation of expenditure is a conceptually important issue 
and can have material impact if other adjustments are made to 
Sumicsid’s analysis and in future iterations. 

3.4 

Model 
development 

Cost driver analysis 

Our validation of Sumicsid’s econometric analysis does not 
support its final model. Its assumed functional form and 
estimation approaches are not conclusively supported by 
empirical evidence and cast doubt on the statistical validity of 
the model. 

Sumicsid’s approach invalidates any of its statements regarding 
statistical significance. 

4.1 

Sample sensitivity 
The coefficients of the econometric model are highly sensitive 
to the exclusion of some TSOs. Many TSOs’ efficiencies are 
highly sensitive to the year in which they are assessed. 

If a model is sensitive to the inclusion of some TSOs, it may be 
poor at explaining industry-wide costs. The variability in a TSO’s 
relative efficiency from year to year indicates yearly effects and 
investment cycles are not appropriately captured. 

4.2 

The use of asset-
based outputs 

Using an alternative capacity measure increases one TSO’s 
efficiency by 15 percentage points and reduces another’s by 
39 percentage points. 

Asset-based models favour TSOs that have deployed expensive 
assets for the same contextual features and may therefore bias 
the efficiency estimates in favour of costly TSOs. It is also 
unusual to only consider input–input models.  

4.3 

Aggregation of 
NormGrid 

Modelling components of NormGrid separately increases 
efficiencies of some TSOs by 29 percentage points and 
significantly changes the distribution of efficiency. 

If NormGrid is to be used, the weights must be robustly justified. 
This will impact final efficiency scores and model development. 

4.4 

Adjusting for 
environmental 
factors 

The environmental adjustment is not positively correlated with 
unit costs. 

The environmental adjustment has not been validated. Models 
with environmental characteristics as exogenous drivers of 
expenditure and other alternatives should be explored. 

4.5 
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Source: Oxera analysis. 

Application 
and validation 

Returns-to-scale 
assumption 

We find no conclusive statistical evidence supporting the 
NDRS assumption. Under VRS, the classification and 
estimates of the TSOs’ efficiency changes significantly. 

The RTS assumption should be consistent with other areas of 
the analysis and supported by statistical and operational 
evidence. 

5.1 

Outlier analysis 
The bootstrap-based dominance test identifies two additional 
outliers and the iterative super-efficiency test identifies three 
additional outliers. 

Sumicsid’s outlier procedure is insufficient and flawed. Any 
outlier analysis is not a replacement for a robust data collection 
and model-development process. 

5.2 

DEA outputs 
NormGrid is not the primary driver of costs for most TSOs. 
Peers and their weights are unusual in some cases and non-
validated. 

The DEA weights suggest that NormGrid is not the primary cost 
driver for most TSOs. Scaling factors on peers suggest that 
TSOs are being benchmarked to peers that are not comparable. 

5.3 

Identification of 
omitted cost drivers 

In a two-output model, we are not able to detect NormGrid or 
weighted lines as relevant omitted variables. 

Sumicsid’s second-stage analysis for model validation has no 
theoretical foundation and is not able to detect relevant omitted 
cost drivers. Relevant cost drivers must be tested in the model-
development and validation phases. 

5.4 

SFA 
The SFA models (applied on a cross-sectional and panel 
basis) do not detect any statistically significant inefficiency. 

This is further evidence that the data is ‘noisy’ and the estimated 
efficiency gaps as identified by DEA do not represent genuine 
differences in efficiency. 

5.5 

Dynamic efficiency 

The estimated dynamic efficiency is -4% p.a. using the DEA 
model. This is supported by SFA models. Moreover, the 
frontier shift is statistically indifferent from zero, consistent with 
the conclusion of the individual inefficiency estimates. 

The dynamic efficiency analysis indicates that the model cannot 
capture changes in costs over time and provides further 
evidence that the analysis is contaminated by statistical noise. 

5.6 



 

 

Final A critical assessment of TCB18 electricity  
Oxera 

18 

 

Recommendations for further development of TCB18 and in future 
iterations 

Some of the weaknesses in Sumicsid’s model, such as consistency in 
reporting guidelines, could be partly driven by the lack of maturity in 
international benchmarking processes and may improve with time. However, 
the analysis presented in the TCB18 study also requires significant 
improvements. In this regard, we consider that it will be helpful to have debriefs 
involving all the parties on process (for example, in terms of data processing 
and validation) and methodology to help future studies. 

Our recommendations include the following. 

• Provide a clear conceptual (and, where possible, empirical) justification for 
any assumptions that feed into each stage of the benchmarking process. 

• Relatedly, provide detailed description in the outputs and publish modelling 
codes to aid transparency (similar to the output presented with this report). 

• Establish an iterative data-collection procedure (including validation and 
cross-checking exercises) to ensure that data is reported correctly and 
consistently across TSOs and validate the reported data. 

• Use statistical analysis, such as Monte Carlo simulations, to evaluate the 
impact of any potential data errors (especially if using deterministic methods 
for efficiency estimation). This could then be used for deriving confidence 
intervals around the estimated efficiency scores. Alternative methods, such 
as SFA, could also inform the extent of the uncertainty adjustment applied in 
the simulations, apart from operational evidence/expert judgement. 

• Robustly capture the impact of all input price differences on expenditure to 
avoid conflating efficiency and this exogenous factor. 

• Perform a scientifically valid model-development process that includes 
consultations with the TSOs throughout and: (i) is based on realistic 
modelling assumptions; (ii) tests the significance of alternative model 
specifications; (iii) tests the sensitivity of the analysis to small changes in the 
sample: and (iv) avoids the restriction of cost drivers to asset-based outputs. 

• Relatedly, the analysis should not be too sensitive to the year in which 
efficiency is assessed. If the estimated efficiency of TSOs fluctuates 
significantly from year to year, the causes of this (e.g. investment cycles) 
must be explored. 

• If asset-based measures are used, these must be validated through 
comparisons to outputs. 

• Provide robust statistical evidence to support modelling assumptions.  

• Develop a robust outlier-detection procedure that is consistent with the 
academic literature and appropriate in an international benchmarking 
context.  

• Analyse the outputs of a DEA model, such as cost driver weights, peers and 
their weights, to ensure that they are consistent with economic and 
operational intuition. 

• Avoid relying on second-stage validation to detect omitted cost drivers. In a 
DEA context, the impact of omitted cost drivers should be assessed by 
testing the sensitivity of the results to alternative model specifications. 
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• Cross-check the analysis with alternative benchmarking methods, such as 
SFA, to validate whether the estimated efficiency scores can be attributed to 
genuine differences in efficiency, or data uncertainty, or the choice of 
benchmarking method. 

• Make effective use of panel data and estimate dynamic efficiency on data 
and model to validate the results, as this can also help to identify flaws with 
the model that are not evident from cross-sectional analysis. 
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1 Introduction 

The transmission cost benchmarking project (TCB18), a study of the cost 
performance of European transmission service operators (TSOs), covering 
gas40 and electricity,41 was commissioned by the Council of European Energy 
Regulators (CEER) and performed by its consultancy, Sumicsid. A consortium 
of European electricity TSOs asked Oxera to perform a shadow benchmarking 
exercise of the TCB18 project. 

In electricity, TCB18 covered 17 European TSOs. Oxera has obtained the full 
sample of data for all electricity TSOs that participated in TCB18 through the 
shadow study. Using this dataset, we were able to validate, critique, and 
improve upon Sumicsid’s analysis. 

Through the extensive analysis in this report, we highlight several significant 
flaws with the study. We offer recommendations on how the results from the 
study should be interpreted and on the additional research required before the 
results could be used to determine revenue cap. We also offer 
recommendations on how the analysis could be improved in future editions of 
the study. 

This report is structured as follows:  

• section 2 provides a brief factual summary of the TCB18 study; 

• section 3 critically examines Sumicsid’s data-collection and data-
construction exercises; 

• section 4 assesses Sumicsid’s approach to model development; 

• section 5 reviews Sumicsid’s application and validation of its final model; 

• section 6 concludes. 

In carrying out this shadow benchmarking exercise, we have drawn on 
Sumicsid’s publicly available final report, the associated appendices,42 the 
TSO-specific reports shared with the TSOs,43 and the slides from the 
workshops undertaken by Sumicsid as part of the TCB18 study. 

                                                
40 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for gas transmission system operators’, July. 
41 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July. 
42 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
appendix’, July. 
43 For example, see Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July. 
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2 Summary of Sumicsid’s TCB18 approach 

This section gives an overview of the TCB18 study to provide context for the 
issues outlined in sections 3–5.  

An efficiency benchmarking exercise can broadly be divided into three phases.  

1. Data collection and construction. Here, data from TSOs is collected, 
audited and screened for errors (such as misreporting or anomalies). After 
one is confident that the data is (to a reasonable degree) without errors, it 
needs to be normalised for differences in reporting (e.g. accounting 
guidelines can vary, expenditure needs to be converted into a single 
currency), regulatory frameworks and operational characteristics to ensure 
that the cost base is comparable across TSOs.  

2. Model development. Given the data, the model for benchmarking is 
derived based on a combination of scientific procedure and expert 
judgement. This concerns the definition of costs (e.g. TOTEX), cost drivers 
(e.g. network length, environmental factors), the approach to the treatment 
of outliers given the chosen model, and the choice of benchmarking model, 
such as data envelopment analysis (DEA)44 and stochastic frontier analysis 
(SFA),45 and motivating the assumptions underpinning each step. 

3. Application and validation. Once the model specification(s) and method 
are selected based on best available data, the model needs to be robustly 
estimated. This involves, among other things, validating the results from the 
model, as well as undertaking robust sensitivities to ensure that the results 
are not driven by specific assumptions made by the modeller. 

In reality, this is not a sequential procedure but a highly iterative one, with 
feedback occurring between the various steps. Even the results from the final 
application of the benchmarking model may highlight additional data and 
modelling queries that necessitate further analysis. The process is illustrated in 
Figure 2.1 below. 

                                                
44 DEA is a mathematical non-parametric approach that is widely used when benchmarking regulated 
companies. For a more detailed discussion on DEA, see Thanassoulis, E. (2001), Introduction to the Theory 
and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software, Springer. 
45 SFA is an econometric approach to benchmarking regulated companies. For a more detailed discussion 
on SFA, see Kumbhakar, S.C, Wang, H-J and Horncastle, A. P. (2015), A Practitioner’s Guide to Stochastic 
Frontier Analysis Using STATA, Cambridge University Press. 
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Figure 2.1 Benchmarking process 

  

Source: Oxera. 

We summarise each step taken by Sumicsid below. 

2.1 Sumicsid’s approach to data collection and construction 

In order to benchmark the cost performance of the European TSOs, it is 
essential to construct a homogenised dataset on the cost and outputs of the 
participating TSOs to enable a like-for-like comparison. That is, cost and 
outputs must be reported consistently (for example, in terms of allocating costs 
to specific activities), and the activities performed by the TSOs must be broadly 
similar.  

Sumicsid states that it followed a six-stage approach to data collection and 
validation.46 

1. Asset system and audited financial statements. This involved the 
collection of asset system data and audited financial statements of TSOs. 

2. Clear guides/templates. CEER, Sumicsid and the TSOs worked 
interactively to establish reporting definitions to translate the data from the 
first stage into something that could be used for international benchmarking. 

3. Interaction (e.g. workshop). There was interaction between the TSOs, 
NRAs and Sumicsid at all stages in the data-collection process to ensure 
the correct interpretation of reporting guidelines. 

4. National validation. The national regulatory authorities (NRAs) validate the 
data to ensure the data is ‘complete, consistent, correct and plausible’.  

                                                
46 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 3.2. 
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5. Cross-validation. Sumicsid performed an additional cross-validation 
exercise to identify and correct for any remaining misinterpretations of 
reporting guidelines. 

6. Data analysis. Related to the cross-validation process, Sumicsid continued 
to review the data during the modelling process. The modelling process may 
detect errors or misreporting that were not identified in the previous steps. 

As part of its final data checks, Sumicsid states that all TSOs participating in 
the TCB18 study received ‘a dump of asset and financial files’47 that they could 
review for missing or incorrect data. At this stage in the process, there were ‘a 
few final corrections’ for ‘many’ TSOs.48 

For the TCB18 study, Sumicsid also collected data from external sources 
relating to inflation rates,49 price-level differences50 and environmental 
factors.51 

Activities assessed in the benchmarking study 

The management of an electricity transmission network is an extremely 
complex operation. Sumicsid categorises each activity undertaken by TSOs as 
follows.52  

• Transport (T). This entails the core service of TSOs in transporting 
electricity from generators to connection points (such as a downstream 
network, another TSO, or an end-client).  

• Grid maintenance (M). Grid maintenance involves the repair of grid assets 
(both preventative and reactive) and the replacement of degraded 
equipment. 

• Grid planning (P). This involves the analysis, planning and drafting of 
network expansion.  

• Indirect support (I). Indirect expenditure includes administrative support 
functions (such as human resources and IT) that cannot be allocated to a 
specific activity. This includes central management costs.  

• System operations (S). This involves assessing the real-time energy 
balance, failure detection and analysis, and maintaining technical quality.  

• Market facilitation (X). Market facilitation involves the facilitation or 
management of electricity marketplaces.  

• Offshore transport (TO). This entails the transport of electricity through 
offshore assets . 

• Other activities (O). TSOs may perform activities that cannot be classified 
into the above seven activities. 

                                                
47 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 8. 
48 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 8. 
49 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, Table 4.3. 
50 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, Table 4.1. 
51 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, Table 3.1. 
52 For more detail regarding how Sumicsid has defined these activities, see Sumicsid (2019), ‘Pan-European 
cost-efficiency benchmark for electricity transmission system operators main report’, July, sections 4.4–4.12. 
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Sumicsid considers T, M, P and a subset of I to be within the scope of the 
benchmarking study, and allocated costs and outputs on this basis. It claims 
that this was driven by ‘analysis of common factors in cost reporting, the 
variability and homogeneity of the data and the separability of the activity’.53 

Cost construction 

Sumicsid assesses cost performance of the TSOs on a total expenditure 
(TOTEX) basis, where TOTEX is the sum of operating expenditure (OPEX) 
and capital expenditure (CAPEX). The OPEX is calculated on an annual basis 
in real terms (i.e. taking into account general price inflation) with no smoothing 
across years. Cost items within OPEX that are deemed uncontrollable or out-
of-scope54 are excluded from the analysis. Sumicsid applies an adjustment to 
labour costs using the price level index (PLI) for civil engineering works to 
account for differences in wage rates across the TSOs. Finally, the OPEX for 
TSOs operating outside of the euro area is converted to euros using the 
average exchange rate in 2017 (for all years).  

CAPEX is typically ‘lumpy’; a TSO may construct a large segment of the 
network in a particular year, and this will be registered as a large increase in 
investment. To avoid the efficiency estimates being driven by a TSO’s position 
in the investment cycle (or its ‘age'), regulators often consider methods of 
‘smoothing’ CAPEX.  

In this case, Sumicsid has taken the annuity approach to CAPEX 
measurement, whereby the cost of the investment in a particular asset is 
spread over the asset’s lifetime. Specifically, Sumicsid uses investment stream 
data from 1973, assumed certain ‘techno-economic lifetimes’ of each asset, 
and assumed a real interest rate of 3% to calculate the annuity on each 
asset.55 Assessed CAPEX in a particular year is the sum of the annuities for 
assets within the scope of benchmarked activities. 

2.2 Sumicsid’s approach to model development 

Cost benchmarking requires the comparison of homogenous units. However, 
TSOs operate at different scales, produce different mixes of outputs, and have 
different regulatory requirements and operating conditions (such as differences 
in topography and demography). In order to account for such severe 
heterogeneity, it is essential that the drivers of (efficient) expenditure are 
sufficiently understood and controlled for. In this context, we assess the 
process shown in Figure 2.2 below.  

                                                
53 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 18. 
54 These include energy costs, landowner compensation, right-of-way and easement fees, taxes and levies, 
depreciation, research and development and the rent of the main office building 
55 𝐴 = 𝐶𝐴𝑃𝐸𝑋 ∗

𝑟

(1−(1+𝑟)−𝑇
, where A is the annuity, r is the assumed interest rate and T is the assumed lifetime 

of the asset. CAPEX is the expenditure for the asset. This formula splits CAPEX into T constant payments of 
A. For example an investment of 1,000,000€ in an asset with a lifetime of 50 years at an interest rate of 3% 

would result in an annuity of 𝐴 = 1,000,000€ ∗
0.03

1−(1+0.03)−50
=38,865.49€ per year for 50 years. 
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Figure 2.2 Production process 

 

 

Source: Oxera. 

Relevant cost drivers (outputs or environmental factors) are included in the 
benchmarking model in order to homogenise the characteristics of different 
TSOs. Sumicsid states that in an ideal setting, the cost drivers should be: 

• exogenous—i.e. outside of management control; 

• complete—i.e. accounting for all operating characteristics; 

• operable—i.e. clearly defined and measurable; 

• non-redundant—i.e. the set should be as small as possible to avoid 
unnecessary duplication.56 

While Sumicsid does not discuss this in the published report, it notes in some 
workshop slides that it has used econometric analysis to test the relevance of 
candidate cost drivers. In particular, Sumicsid states it has used ‘robust OLS’ 
(ROLS) to estimate and validate the relationship between costs and cost 
drivers in the main report.57 ROLS is an extension of the OLS estimator, which 
attaches less weight to observations that are further from the regression line58 
(i.e. observations that fit the assumed model less well). Based on Sumicsid’s 
final report, it appears to have particularly focused on the model-fit of such cost 
drivers (i.e. the extent to which variations in the cost drivers in the model can 
explain variations in costs) when determining the appropriate outputs to use in 
its benchmarking model.59  

The final outputs used in Sumicsid’s benchmarking model are the following. 

• Environmentally adjusted Normalised Grid (‘NormGrid’)—a measure of the 
assets used to deliver outputs, adjusted for the land-use characteristics in 
the TSO’s service area. This output is discussed in more detail below. 

• Transformer power—the sum of power across all transformers owned by 
TSOs. 

                                                
56 See Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system 
operators main report’, July, p. 28. 
57 See Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system 
operators main report’, July, Table 5.3.  
58 Regression analysis is a statistical method that separates out the impact of different factors in explaining 
movements in the key variable of interest. This variable of interest is known as the ‘dependent variable’ 
(TOTEX in this context). The regression identifies how the different cost drivers contribute to explaining the 
observed values of the dependent variable, and whether the cost drivers are statistically significant. Simple 
regression, with one dependent variable and one cost driver, can be visualised graphically as a ‘line of best 
fit’. This visualisation becomes more difficult as more cost drivers are added to the model.  
59 For example, Sumicsid presents only the adjusted R2 for three models in a table in its report (see Sumicsid 
(2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators main report’, 
July, Table 5.3). In addition, the workshop slides tended to focus on the adjusted R2 for the validation of 
NormGrid (see Sumicsid (2018), ‘Validation of NormGrid and Preliminary Environmental Results’, November, 
slides 6–11). 



 

 

Final A critical assessment of TCB18 electricity  
Oxera 

26 

 

• Weighted lines—the total length of lines multiplied by the share of angular 
towers and share of steel towers. 

NormGrid construction 

NormGrid can be considered as an aggregated measure of the in-scope assets 
deployed by TSOs. Sumicsid describes it as ‘a cost-norm for the construction 
costs for the standard assets’.60 Specifically, NormGrid is calculated as the 
weighted sum of in-scope assets according to the equations below.  

𝑁𝑜𝑟𝑚𝐺𝑟𝑖𝑑 = 𝑁𝑜𝑟𝑚𝐺𝑟𝑖𝑑𝑂𝑃𝐸𝑋 + 𝑁𝑜𝑟𝑚𝐺𝑟𝑖𝑑𝐶𝐴𝑃𝐸𝑋  

𝑁𝑜𝑟𝑚𝐺𝑟𝑖𝑑𝑂𝑃𝐸𝑋 = ∑ ∑(𝑁𝑎𝑡 ∗ 𝑤𝑎)

𝑎𝑡

 

𝑁𝑜𝑟𝑚𝐺𝑟𝑖𝑑𝐶𝐴𝑃𝐸𝑋 = ∑ ∑ 𝑛𝑎𝑡 ∗ 𝑣𝑎 ∗ 𝛼(𝑟, 𝑇𝑎)

𝑎𝑡

 

Where: 

• 𝑁𝑎𝑡 is the number of assets of type 𝑎, acquired at time 𝑡; 

• 𝑤𝑎 is the OPEX weight for assets of type 𝑎; 

• 𝑛𝑎𝑡 is the number of assets of type 𝑎, acquired at time 𝑡 and in prime age; 

• 𝑣𝑎 is the CAPEX weight for assets of type 𝑎; 

• 𝛼 is the annuity function, which is determined by: 

• the real interest rate, 𝑟; 

• the ‘techno-economic life’ of the asset, 𝑇𝑎. 

The weight on each asset is supposed to account for the characteristics of the 
asset within an asset class. For example, it is typically more costly to construct 
and operate a high-voltage line than a low-voltage line. Sumicsid outlines the 
formula for each asset weight in an appendix to its main report,61 but the 
formulae are not clearly supported by evidence in the report or its appendices. 

Environmental adjustment 

Sumicsid states: 

Environmental conditions influence the investment cost for, in particular 
overhead lines and underground cables, to a lesser extent the costs for 
transformers and other assets. […] Operating costs, including maintenance 
costs, are affected by a some additional factors by virtue of the location and 
configuration of the assets62 

Sumicsid considered factors that could account for these differences in 
operating characteristics, including land use type, topography, vegetation type, 
soil humidity, subsurface features, extreme temperatures, and salinity. In its 
final report, Sumicsid states that ‘extensive statistical tests revealed 

                                                
60 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 25. 
61 Sumicsid (2019), ‘Norm Grid Development’, July, section 4. 
62 Sumicsid (2019), ‘Norm Grid Development’, July, section 5. 
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correlations and interaction between several of the factors’, and that ‘the most 
important factor for electricity was land use’.63  

Sumicsid adjusted the NormGrid variable to account for land use type by 
multiplying it by an overall environmental factor. This factor is calculated by 
multiplying the share of a TSO’s service area covered in a certain feature with 
a complexity factor. We illustrate the calculation of this factor for the average of 
the 17 TSOs’ operating areas in Table 2.1 below.  

Table 2.1  Calculation of the environmental adjustment 

Feature Factor  

(A) 

Share of area 
covered  

(B) 

Resulting 
adjustment  

(A*B) 

Urban areas 1.5 3.8% 0.06 

Infrastructure 3.5 0.2% 0.01 

Agricultural, cultivated 1 24.7% 0.25 

Forest 1.55 30.0% 0.47 

Grass, meadows 1 8.9% 0.09 

Shrubs, bushlands 1.1 5.4% 0.06 

Without use 1 3.1% 0.03 

Lakes, rivers, ponds 1.2 4.3% 0.05 

Other 1 19.5% 0.20 

Sum  100% 1.20 

Source: Oxera analysis, based on Sumicsid data. 

2.3 Sumicsid’s approach to efficiency estimation and model validation 

Sumicsid uses DEA64 to estimate the relative efficiency of the TSOs. DEA uses 
linear programming models to estimate the minimum level of TOTEX needed 
for a TSO to meet its outputs (i.e. the cost drivers considered in the model) 
given the cost and output data for all the TSOs. The relatively efficient TSOs 
would be those for which no better performing TSO (‘peer’) could be identified 
in the dataset, and these TSOs would form the efficient frontier. DEA is further 
explained in Box 2.1. 

                                                
63 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 33.  
64 Thanassoulis, E. (2001), Introduction to the Theory and Application of Data Envelopment Analysis: A 
foundation text with integrated software, Kluwer Academic Publishers.  
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Box 2.1 An overview of DEA 

DEA has been used by a number of regulators and academics to assess the efficiency of 
companies and public service providers (such as in health and education). In its simplest 
form, DEA is an intuitive and transparent method for estimating the efficient frontier.  

Suppose that all companies are identical in their production volume—for example, all 
firms serve the same number of customers who live in a comparable area. All one needs 
to do is order firms by their cost, and the one with the lowest cost sets the benchmark (it 
also has the lowest unit cost) or the efficient frontier. 

However, the reality is far more complicated. The TSO dataset is characterised by 
severe heterogeneity, and a simple cost-by-cost comparison is not feasible. Multiple 
outputs are involved, and they differ across the TSOs. In this context, for an individual 
TSO, DEA tries to identify a peer TSO from existing (efficient) ones by combining them in 
certain proportions by means of linear programming. The peer TSO produces the same 
or more output than the TSO in question, but at lower cost (i.e. a lower level of TOTEX). 

Figure 2.3 presents a stylised example of DEA in which NormGrid and transformer power 
are the two outputs, TOTEX is the input, and the technology exhibits constant returns to 
scale. TSOs A, B, C and D are identified as efficient as no other TSO in the sample 
produces more of any one output without producing less of another output for a unit of 
TOTEX. TSO E is estimated to be inefficient, as TSO B can produce more of both 
outputs for the same unit of TOTEX. Similarly, TSO F is estimated to be inefficient, as 
TSOs B and C can produce more outputs for the same unit of TOTEX. DEA can be 
extended to account for any number of inputs or outputs.  

Figure 2.3 Stylised example of DEA 

 

Note: It is assumed that interpolation between real TSOs leads to a feasible point for any TSO to 
operate. Therefore each point on the graph enveloped by the frontier ABCD and the frontier itself 
represents a real or virtual TSO. ABCD is the efficient frontier in that no real or virtual TSO can 
exceed one of its outputs without attaining less on the other output for a unit of TOTEX. 

Source: Oxera. 

Sumicsid states that according to convention, the number of input variables 
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the number of observations.65 In this case, the number of inputs is 1, the 
number of outputs is 3, and the number of observations is 17. Sumicsid states 
that as (1+3)=4 and 17/3~5.7, the model is therefore sufficiently discriminatory. 

Returns to scale 

One of the key steps in the application of DEA relates to the specification of the 
returns-to-scale assumption. This is explained in Box 2.2.  

Sumicsid assumes non-decreasing returns to scale (NDRS)66 in the model. 
NDRS can be seen as a variant of variable returns to scale (VRS), whereby 
TSOs may have increasing returns to scale when scale size is small (i.e. an 
increase (or decrease) in cost results in a more-than-proportionate increase (or 
decrease) in outputs), but operating under constant returns to scale (CRS) 
beyond a certain scale (in other words, no portion of the efficient frontier 
exhibits decreasing returns to scale). Sumicsid claims that this returns-to-scale 
assumption is supported by statistical evidence, but it does not present 
evidence to support this claim in its final outputs.  

                                                
65 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for gas transmission system operators’, July, 
p. 35. 
66 Otherwise known as ‘increasing returns to scale’ (‘IRS’). 
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Box 2.2 Returns to scale 

‘Returns to scale’ relates to how changes in outputs (e.g. NormGrid) are linked to 
associated changes in inputs (e.g. TOTEX) for efficient companies. In applications of 
DEA, the typical assumptions are constant returns to scale (CRS) or variable returns 
to scale (VRS).  

Under CRS, it is assumed that when outputs rise or fall by a certain amount, say 5%, 
efficient companies would be expected to increase or decrease cost by that same 
amount (5%). In contrast, under VRS, when outputs rise or fall by a certain amount, 
say 5% again, efficient costs can rise or fall by a percentage greater than, less than, 
or equal to 5%, depending on whether decreasing, increasing or constant returns to 
scale are expected to prevail.  

Figure 2.4 shows an illustrative example of different returns-to-scale assumptions in 
a single-input, single-output context. The line passing through OB represents the 
CRS efficient frontier, while the line ABCD represents the VRS frontier. Under VRS, 
the line AB exhibits increasing returns to scale in that for a unit rise in TOTEX (input) 
we have a more than proportional rise in NormGrid (output). In contrast, on BC and 
CD we have decreasing returns to scale in that for a unit rise in TOTEX we have a 
less than proportional rise in NormGrid. The key practical implication is that B 
exhibiting maximum NormGrid per unit TOTEX cannot be scaled under VRS to 
provide benchmarks as it can along OB under CRS. VRS is therefore generally a 
less demanding assumption than CRS where benchmark performance is concerned. 

Figure 2.4 Illustration of returns to scale  

 

Source: Oxera. 

Outlier analysis 

The particular form of DEA that Sumicsid has considered in its analysis is 
deterministic. Such an approach takes no account of statistical noise (e.g. 
random data errors) in estimating the efficient frontier or individual efficiency 
scores. To mitigate the impact of potential outliers, Sumicsid follows the same 
outlier procedure as applied by the Bundesnetzagentur and outlined in the 
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German Incentive Ordinance (‘ARegV’). Specifically, Sumicsid performs a 
dominance and a super-efficiency test (explained in Box 2.3) to detect and 
remove outliers.  

Box 2.3 The Bundesnetzagentur’s outlier procedure 

The Bundesnetzagentur is required to follow the methodology outlined in the ARegV 
to detect and remove outlier observations. In its application of DEA, the 
Bundesnetzagentur (i.e. or, specifically, the consultancy it has engaged) must 
remove the dominant and super-efficient outliers; these are defined below. 

Dominance test 

The aim of the dominance test is to identify companies that exert a substantial effect 
on the efficiencies of many other companies. The test, as outlined in the ARegV, 
compares the mean efficiency of all companies, including the potential outlier, with 
the mean efficiency calculated after excluding the potential outlier. If the efficiencies 
computed with and without the potential outlier are statistically different from each 
other at the 95% confidence level, the company is deemed dominant and removed 
from the sample.  

By construction, removing one efficient company will increase the efficiencies of all 
companies to which it is a peer. To determine whether the difference in efficiencies 
with and without the company are statistically significant, the following test statistic is 
computed.  

∑ (𝐸(𝑘; 𝐾\𝑖) − 1)2
𝑘∈𝐾\𝑖 

∑ (𝐸(𝑘; 𝐾) − 1)2
𝑘∈𝐾\𝑖 

 

Where: 

• K is the total number of units (in this case, 16 TSOs); 

• 𝐸(𝑘; 𝐾\𝑖) is the efficiency of TSO K estimated from the sample excluding the 

potential outlier, 𝑖; 

• 𝐸(𝑘; 𝐾\𝑖) is the efficiency of TSO K estimated from the sample including the 

potential outlier, 𝑖. 

This test statistic is assumed to follow an F distribution, and the company in question 
is removed if the value of the test statistic has a less than 5% chance of being 
randomly observed in the sample (i.e. a 95% confidence level). 

Super-efficiency 

The super-efficiency test aims to identify companies that are significantly more 
efficient than the rest of the sample. As defined in the ARegV, a company is 
considered super-efficient if its efficiency score when assessed relative to the rest of 
the companies (i.e. without it) exceeds the third-quartile efficiency value by more 
than 1.5 times the interquartile (i.e. between the third and first quartiles) range of 
efficiency values.  

Furthermore, Sumicsid removed one TSO before the implementation of the 
outlier procedure. Sumicsid states that this TSO was ‘almost always an 
extreme outlier’ in its model-development phase,67 but the empirical evidence 
for this was not provided in Sumicsid’s final outputs.  

                                                
67 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 35. 
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Model validation 

After estimating the model, Sumicsid performs a certain ‘robustness analysis’68 
to test the sensitivity of the results to changes in the following specific 
modelling assumptions: interest rate, NormGrid calibration between OPEX and 
CAPEX, NormGrid weight for lines vs other assets, and salary corrections for 
capitalised labour in investments.69 Sumicsid presents the impact of the 
changes on the average efficiency score in the sample. The impact on 
individual TSOs is not presented in the main report.  

In the TSO-specific outputs, Sumicsid carries out second-stage analysis to test 
whether any relevant cost drivers have been omitted in the first-stage model 
used for efficiency estimation. Our understanding from the TSO-specific 
outputs is that in the second-stage analysis, Sumicsid regresses the estimated 
efficiency scores from the DEA model against potentially omitted drivers of 
expenditure (such as NormGrid weighted with slope factors) one at a time, 
according to the equation below. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖 = 𝛽0 + 𝛽1𝑌𝑖 + 𝜀𝑖   

Where: 

• 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖 is the estimated efficiency of TSO 𝑖; 

• 𝑌𝑖 is the value of the omitted output of TSO 𝑖; 

• 𝜀𝑖 is a random error component. 

Sumicsid states that if the estimated coefficient 𝛽̂1 is statistically insignificant, 
the output in question, 𝑌, is ‘already considered in the model and do[es] not 
merit specific post-run corrections’.70  

It is not clear from the individual report whether the regression is estimated 
using OLS, ROLS or some other estimator, but Sumicsid states in the main 
report that: 

[…] second-stage analyses are typically done using graphical inspection, non-
parametric Kruskal-Wallis tests for ordinal differences and truncated Tobit 
regressions for cardinal variables.71 

Sumicsid further states that such second-stage analysis of this sort is ‘routinely 
done’ to identify omitted cost drivers,72 but provides no evidence to support this 
statement. 

Having summarised Sumicsid’s approach, in the next three sections we 
critically review Sumicsid’s approach to data collection and construction, model 
development, and application and validation. 

 

                                                
68 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 5.5. 
69 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 38. 
70 Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, p. 35. 
71 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, paragraph 4.09. 
72 Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, p. 35. 
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3 TCB18 data collection and construction 

This section outlines the issues that we have identified regarding Sumicsid’s 
approach to the data collection, cleaning, validation, and normalisation 
procedures in TCB18. The following issues are covered. 

• The dataset used in TCB18 contains significant data errors that were not 
corrected by Sumicsid (section 3.1). 

• TSOs differ significantly in their cost structure. We consider the risk that this 
impacts on the estimated efficiency (section 3.2). 

• Most of the cost data was not normalised for price-level differences (section 
3.3).  

• The allocation of indirect costs is influenced by uncontrollable costs. This 
risks conflating uncontrollable factors with inefficiency (section 3.4). 

3.1 Data errors 

3.1.1 Description of the issue 

Any empirical analysis relies on the accuracy of the data being used, and real 
data tends to be noisy. These errors can, for example, result from issues such 
as: 

• misreporting—for example, one TSO mistakenly enters some of its towers 
as ‘steel’ as opposed to ‘wood’; 

• miscommunication—for example, one TSO submits CAPEX data that has 
already been adjusted for inflation, but is subsequently adjusted again by 
Sumicsid (therefore resulting in a double-counting of the inflationary impact); 

• measurement errors—for example, some TSOs aggregate their towers in a 
way that seems to indicate that they have no angular towers, which was not 
spotted by Sumicsid. 

All of the above scenarios occurred in TCB18 and are present in the final 
dataset on which the published results were estimated. These are empirical 
issues and their effect on the dataset needs to be explored.  

While some methods are better able to account for data inaccuracies than 
others, DEA as applied by Sumicsid in TCB18 does not account for them at all. 
DEA (as applied by Sumicsid) is particularly sensitive to data errors because it 
takes no account of statistical noise (which includes certain types of data errors 
that are random and symmetrical). Efficiency estimates exclusively rely on the 
identified benchmark (i.e. relatively efficient) TSOs. Therefore, any TSO 
identified as a benchmark and placed on the efficient frontier because of a data 
error will affect the results for other TSOs for which this particular TSO acts as 
a benchmark. The reverse is also true, in that a TSO failing to be identified as 
a benchmark through a data error could also affect the position and shape of 
the efficient frontier.73 

Therefore, a rigorous data-screening process is required before any empirical 
assessment of efficiency analysis. This is especially true in a regulatory 

                                                
73 Placing a TSO by error on the efficient frontier would adversely affect the efficiencies of TSOs for which it 
is a peer. Similarly, failing to place a TSO by error on the efficient frontier would benefit the efficiencies of 
TSOs for which it might have been a peer. As data errors can be random, in a comparative assessment we 
cannot know which TSOs benefited and which suffered in their comparative efficiency through TSOs being 
erroneously placed on the frontier or, conversely, through failing to feature on the frontier. 
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context, where data errors can have significant financial consequences for the 
regulated entities, which can result in a wider adverse impact for consumers. 

3.1.2 Sumicsid’s approach to data errors 

As outlined in section 2.1, Sumicsid states that its data collection and validation 
procedure consisted of six stages.74 Sumicsid states that ‘although no 
approach will be fully safe’ the datasets are of ‘good quality’.75  

3.1.3 Critique and proposed solution 

While Sumicsid’s description of the overall procedure to data collection that it 
has followed appears relatively consistent with good practice, in the shadow 
study, several TSOs noted that their data used by Sumicsid is not accurate. 
The examples in section 3.1.1 illustrate how all three potential data issues 
resulted in errors in the TCB18 data. Some TSOs flagged data inaccuracies to 
Sumicsid over the course of the study, but these were not corrected for in 
Sumicsid’s final analysis. While we can correct for data errors that were 
pointed out to us, this is indicative of wider issues that cannot be fixed by 
adjusting the data for individual TSOs. 

Sumicsid must therefore ensure that the patterns observed in the data—across 
TSOs as well as over time, as well as with respect to the chosen models and 
efficiency estimation methods—are consistent with operational expectations 
(determined through engineering and economic analysis). Where data errors 
exist, an appropriate solution is to have a rigorous data-cleaning process and a 
comprehensive sensitivity analysis. This should involve: 

• extensive data checks to ensure that the relationships in the data are in line 
with operational expectations for every TSO; 

• iterative consultations with the TSOs to ensure that the submitted data is 
correct and reported in a consistent fashion. 

Even after these steps have been taken, processes must be in place to either 
correct or remove any irregular observations remaining in the dataset. 

It is beyond the scope of this report to pursue any of these process-related 
solutions relating to data reporting and screening, which should have been 
considered comprehensively before undertaking any analysis. As part of the 
shadow study, we had to take the data collated and processed by Sumicsid as 
given and could only make specific changes for particular companies (and we 
were therefore unable to tackle any systematic or pervasive errors).  

Thus, to account for data errors, we have estimated an appropriate margin of 
error relative to the TSOs’ efficiency scores. While the data errors are 
extensive, in this report, we suggest the use of a Monte Carlo simulation to 
account for the data errors at least to some extent. The Monte Carlo simulation 
adds a random component to all inputs and outputs,76 and the magnitude of 
this random component can be informed by our knowledge on the prevalence 
of data errors. Such simulations have been used, for example, by the Office of 
Rail and Road (ORR) in the UK in its PR13 benchmarking of Network Rail 

                                                
74 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 3.2. 
75 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 3.06–3.07. 
76 For example, if a TSO reported a TOTEX of €10m then we would draw a number between €9m and €11m 
from a uniform distribution. We do the same thing for all other outputs and for all TSOs. We then estimate 
the efficiencies. We repeat this process 1,000 times to arrive at a distribution of estimated efficiency scores. 
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against international rail infrastructure managers, in which a 2.5% random 
component was applied to the data.77  

In the present case, we chose to apply a 10% random component. While this is 
a larger random adjustment than that applied by ORR, it is significantly smaller 
than many of the errors we found in the data. For example, an error discovered 
in a TSO’s CAPEX overstates its TOTEX by 32%. In another case, the value 
for weighted lines is overstated by 27%. In this context, a 10% random 
component is relatively conservative. 

The margins of error for the TSOs’ efficiency scores based on this method are 
presented in Figure 3.1.78 We note the following.  

• While Sumicsid estimates seven TSOs as efficient, eleven TSOs have 
100% efficiency within the margin of error. That is, given the data 
uncertainty, we cannot be certain (at the 90% significance level) that these 
four additional TSOs are not operating efficiently. 

• Some TSOs are particularly sensitive to the inclusion of random noise. For 
example, the fifth TSO (reading from left to right in Figure 3.1) has an 
estimated efficiency score of 70% in Sumicsid’s analysis. However, the 90% 
confidence interval lies in the range of 59–88%.79  

Figure 3.1  Confidence intervals based on the Monte Carlo simulation 

Note: Based on 1,000 draws of a random component of 10% in TOTEX, Adj. NormGrid, 
transformer power and weighted lines. 

Source: Oxera analysis. 

If the efficiency scores from the TCB18 study are to be used to inform cost 
allowances, it is essential that the uncertainty inherent in the data and 
modelling is taken into account. To that end, a regulator needs to be confident 
that the proposed savings are feasible.  

Note that the Monte Carlo simulations we have considered focus only on 
random and symmetrical statistical noise. As such, the estimated efficiency 

                                                
77 Office of Rail Regulation (2013), ‘PR13 Efficiency Benchmarking of Network Rail using LICB’, August, p. 
55.  
78 We note that while Sumicsid identifies three outliers with the outlier tests it describes in Sumicsid (2019), 
we are only able to identify two. This leads to the estimated efficiencies in our replication being slightly lower 
than in Sumicsid’s output. We know which TSO was identified as the additional outlier, if we do so too we 
match the efficiencies exactly.  
79 This interpretation assumes that the model itself is fundamentally correct (e.g. all relevant outputs are 
considered) and the only ‘flaw’ in the modelling is a random data error. 
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scores from TCB18 will lie within the estimated confidence intervals by 
construction. Other sections of this report address some of the systematic 
issues that bias the results for some TSOs. 

3.2 Defining the input variable  

3.2.1 Description of the issue 

Sumicsid uses TOTEX as the input in their models, where its measure of 
TOTEX is constructed by summing OPEX and CAPEX. For this approach to 
provide the correct incentives and a robust estimate of managerial efficiency, it 
must be assumed that OPEX and CAPEX are as follows. 

• Equivalent—at the margin, €1 of CAPEX should have the same worth as €1 
of OPEX in terms of supporting output levels. That is, there must be a one-
to-one trade-off between OPEX and CAPEX. 

• Controllable—the ratio of OPEX to CAPEX needs to be within the control of 
management. 

If the above conditions do not hold, then it may be more appropriate to 
explicitly account for the trade-off between OPEX and CAPEX in the 
benchmarking model.  

3.2.2 Sumicsid’s approach to defining the input variable 

Sumicsid uses a TOTEX model to assess the efficiency of TSOs. It states that 
such a model provides incentives for TSOs to balance OPEX and CAPEX 
solutions,80 but the equivalence and controllability conditions are not discussed 
in its report. 

3.2.3 Critique and proposed solution 

Sumicsid has made separate adjustments and normalisations to OPEX and 
CAPEX, as shown in Table 3.1.  

Table 3.1 Sumicsid’s cost normalisation approach 

Issue OPEX CAPEX 

Time period over which 
it is assessed 

Annual (i.e. only 2017 OPEX is 
considered) 

A sum of annuitized investments 
from 1973 

PLI adjustment 
Adjustment for labour prices using 
the PLI for civil engineering works 

No PLI adjustment 

Inflation adjustment N/A1 Adjusted for inflation in overall 
goods 

Note: 1 Sumicsid’s final model is estimated using OPEX from the year 2017 only. As such, the 
inflation adjustment is not applicable.  

Source: Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission 
system operators main report’, sections 4.14–4.16.  

Operationally, it is unlikely that a euro of CAPEX should have the same impact 
as a euro of OPEX. Moreover, the separate treatment of OPEX and CAPEX in 
the cost normalisation process casts doubt on the equivalence between the 
two. A manager could re-allocate €1 from OPEX to CAPEX and the resulting 
normalised TOTEX will be different. Similarly, two TSOs that have equivalent 
levels of TOTEX may have different level of normalised TOTEX due to 
differences in cost reporting. In this context, it is inappropriate to impose a one-

                                                
80 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 19. 
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to-one trade-off between OPEX and CAPEX by treating TOTEX as a single 
input.  

Furthermore, the significant variance in CAPEX shares across TSOs may be 
indicative of fundamentally different operating models or reporting differences. 
Different operating models could be driven, for example, by maturity of the 
networks, legislative and regulatory obligations, or operational characteristics. 
For example, the Latvian TSO, AST, does not own the electricity transmission 
network assets, as mandated by the Latvian electricity market law.81 A TSO 
that does not own the electricity transmission assets it uses will almost 
certainly be less CAPEX-intensive than TSOs that own these assets, since 
leasing is treated as OPEX. This illustrates that the CAPEX–OPEX mix may be 
a matter of regulatory policy and not completely within the control of the TSOs.  

The treatment of OPEX and CAPEX is especially concerning in the current 
context, where the share of CAPEX in TOTEX varies significantly across 
TSOs. In 2017, CAPEX as a percentage of TOTEX varies from 23% to 90%, 
with most TSOs having a share of CAPEX within TOTEX significantly above 
50%. The CAPEX/TOTEX ratio can be even more extreme in other years. For 
example, Sumicsid’s data suggests that some TSOs had a share of CAPEX 
within TOTEX of 11% in 2013.  

To ensure that a TSO is compared only to TSOs with similar OPEX and 
CAPEX ratios, one option would be to consider OPEX and CAPEX as separate 
inputs in the DEA model.82 This would directly account for the heterogeneity 
between the cost categories.  

Figure 3.2 illustrates the effect of this change. The results show: 

• one TSO assessed to be efficient in Sumicsid’s model becomes inefficient in 
the two-input model; 

• two TSOs assessed to be inefficient in Sumicsid’s model become efficient; 

• the seventh TSO (reading from left to right) has one of the highest shares of 
CAPEX in TOTEX (84%) and is compared to a TSO for whom CAPEX is a 
mere 25% of TOTEX in Sumicsid’s TOTEX model. When the heterogeneity 
is taken into account in a two-input model, the former TSO becomes 100% 
efficient. 

                                                
81 Augstsprieguma tikls (2017), ‘Financial statements 2017’, p. 62. 
82 Multi-input models can also be estimated in an SFA context. See Kumbhakar, S.C, Wang, H-J and 
Horncastle, A. P. (2015), A Practitioner’s Guide to Stochastic Frontier Analysis Using STATA, Cambridge 
University Press, chapter 6. 
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Figure 3.2 Impact of moving to a two-input model 

Source: Oxera analysis.  

An alternative approach to a two-input model could be to construct TOTEX as 
a weighted average of OPEX and CAPEX (where the weights are based on 
expert judgement), recognising that some TSOs are able to make trade-offs, 
but maintaining flexibility regarding the exact relationship.83 It is also possible 
to model activities at a disaggregate level before aggregating to a TOTEX 
efficiency. This is one of the approaches used by UK regulators.84 Such 
models could also serve as a cross-check for models developed on a TOTEX 
basis as they can capture drivers of specific types of costs more robustly. 

3.3 Adjusting for differences in input prices 

3.3.1 Description of the issue 

Price-level differences can persist even in closely linked economies and for 
relatively mobile goods.85, 86 TSOs are likely to choose their input mixes in the 
way that optimises the impact of price-level differences. For example, a TSO 
facing high labour costs may choose to invest more in CAPEX, thereby 
reducing its maintenance costs. However, it is not possible for a TSO to fully 
mitigate the impact of higher input prices across all inputs. That is, input prices 
are exogenous (i.e. not within management control).  

                                                
83 The weighted average representation of TOTEX would be: TOTEX = w*CAPEX +(1-w)*OPEX = 
OPEX +w*(CAPEX-OPEX). The weight w can be estimated through a regression of OPEX on CAPEX. For 
additional flexibility, a squared or cubed term can be included. Typically there is a confidence interval around 
the weight and it can be introduced in the two-input DEA model in the form of an additional constraint 
specifying the relationship between the two.  
84 Ofwat (2019), ‘PR19 final determinations: Securing cost efficiency technical appendix’, December; Ofgem 
(2019), ‘Consultation - RIIO-2 tools for cost assessment’, June. 
85 For studies of price levels in closely linked economies, see, for example, Berka, M. and Devereux, M.B. 
(2010), ‘What determines European real exchange rates?’, National Bureau of Economic Research; and 
Engel, C. and Rogers, J.H. (1996), ‘How wide is the border?’, The American Economic Review, 86:5, pp. 
1112–25.  
86 For studies on the effect of a single currency, see for example Engel, C. and Rogers, J.H. (2004), 
‘European product market integration after the euro’, Economic Policy, 19:39, pp. 348–84; and Eurostat 
(2019), ‘GDP per capita, consumption per capita and price-level indices’, 
https://ec.europa.eu/Eurostat/statistics-
explained/index.php?title=GDP_per_capita,_consumption_per_capita_and_price_level_indices#Relative_vol
umes_of_GDP_per_capita, accessed 26 November 2019. 
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Controlling for the impact of input prices on expenditure is an important step in 
normalising costs over different jurisdictions, and is often done in national and 
international benchmarking studies. 87  

3.3.2 Sumicsid’s approach to adjusting for input prices 

Sumicsid acknowledges that price-level differences exist for some input 
factors, namely labour. It further concedes that input prices are exogenous:  

In order to make the operating costs comparable between countries a correction 
for differences in national salary cost levels has been applied. Otherwise TSOs 
would be held responsible for cost effects, e.g. high wage level, which is not 
controllable by them.88 

In particular, Sumicsid applies a correction to direct manpower costs within 
OPEX using the price-level index (PLI) for civil engineering from Eurostat. The 
index ‘includes construction not classified under buildings, for example railways 
and bridges’.89, 90  

Price-level differences for other inputs are not discussed in the outputs.  

3.3.3 Critique and proposed solution 

Sumicsid correctly recognises the need to correct for price-level differences 
across TSOs. However, we have identified two broad issues with Sumicsid’s 
approach. 

• Adjusting labour costs by the PLI for civil engineering does not take into 
account the fact that labour costs may vary by more than overall civil 
engineering price levels, which includes factors of production that may be 
more mobile across borders within the European Economic Area (EEA) 
such as raw materials (e.g. construction materials such as metals, plastics 
and concrete).  

• Sumicsid does not apply a correction to any cost item other than direct 
manpower cost. This means that Sumicsid only accounts for input price 
differentials for a very small proportion of the cost base (approximately 5.9% 
of TOTEX, on average across TSOs) without sufficient justification. As such, 
Sumicsid assumes there are no input price differences across the 
participating TSOs for all the other components of OPEX, such as purchase 
of external maintenance, personnel leasing, consultancies, office supplies 
and control centre costs, as well as all components of CAPEX including 
setup costs. 

The adjustment made by Sumicsid is therefore insufficient as it does not 
capture all of the material differences in price levels between countries. In fact, 
the TCB18 study assumes that maintenance services and all investment goods 
can be procured for the same price in Norway as they can be in Germany, 
Slovenia and the UK. Sumicsid does not provide sufficient evidence to validate 
its hypotheses, nor does it consider that:  

                                                
87 For example, see Office for Rail and Road (2013), ‘PR13 Efficiency Benchmarking of Network Rail using 
LICB’, August, pp.12–14, August. 
88 Sumicsid (2019), Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report, section 4.46, p. 20, July 
89 Eurostat (2018), Glossary: Civil engineering work, available at: https://ec.europa.eu/Eurostat/statistics-
explained/index.php/Glossary:Civil_engineering_work, accessed 8 December 2019. 
90 Eurostat (2019), Purchasing power parities (PPPs), price-level indices and real expenditures for ESA 2010 
aggregates, available at: https://appsso.Eurostat.ec.europa.eu/nui/show.do?dataset=prc_ppp_ind&lang=en, 
accessed 29 November 2019 

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Civil_engineering_work
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Civil_engineering_work
https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=prc_ppp_ind&lang=en
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• a significant proportion of CAPEX is labour or labour-related costs (e.g. 
installation costs) and not covered by the adjustment to gross labour costs 
in OPEX;  

• differences in the price of more mobile factors of production, such as raw 
materials, do exist across the EEA due to, for example, transportation costs, 
as evident in differences in the investment goods, total goods and other 
price indices;91 

• regulations such as local procurement rules sometimes restrict the scope for 
arbitrage, and therefore limit the ability of the market to homogenise input 
prices across jurisdictions;  

• much of the (44-year) CAPEX investment stream used to calculate TOTEX 
was incurred decades ago, before the close integration of the EU and EEA 
was complete. Intuitively, the TSOs operating in the former Soviet sphere of 
influence were likely not part of the same market as western European 
TSOs prior to 1990, due to stringent trade restrictions.92 It is therefore 
unlikely that they faced the same input prices.  

The approach chosen by Sumicsid thus does not normalise the cost sufficiently 
and risks conflating the uncontrollable price-level differences faced by 
companies with managerial inefficiency.  

In national and international benchmarking exercises, it is common to adjust all 
expenditure to account for regional and international differences in prices. In 
the UK, for example, the Office of Rail and Road (ORR) adjusted all cost data 
(100% of OPEX and CAPEX) using the PLI for GDP adjustment in its 
international benchmarking of Network Rail’s efficiency for its ‘PR13’ price 
review.93 Differences in input prices are sometimes considered in national 
benchmarking exercises.94 

Although it is clear that input price adjustments are required across a material 
proportion of the cost base, if not the entire cost base, the precise method of 
correcting for price differences requires careful consideration. In particular, one 
needs to consider: 

• the basket of goods represented by the PLI (e.g. consumer prices, 
construction prices); 

• the base year of the PLI (e.g. as the published values of price levels can 
vary across years, should we express prices in price levels for 2017, 2016 
or an average over the modelled period?); 

• the percentage of the cost base subject to the PLI adjustment (e.g. are there 
cost components whose prices do not vary across countries or TSOs?); 

                                                
91 Eurostat (2019), Purchasing power parities (PPPs), price-level indices and real expenditures for ESA 2010 
aggregates, available at: https://appsso.Eurostat.ec.europa.eu/nui/show.do?dataset=prc_ppp_ind&lang=en, 
accessed 29 November 2019. 
92 Trade within the Soviet sphere of influence was conducted under a different system of exchange. See 
Broadman, H. G. (ed.). (2006), From disintegration to reintegration: Eastern Europe and the former Soviet 
Union in international trade, The World Bank, Box 1.1, p. 52. 
93 Office for Rail and Road (2013), ‘PR13 Efficiency Benchmarking of Network Rail using LICB’, August, 
pp.12–14, August; (2008), ‘Periodic review 2008 Determination of Network Rail’s outputs and funding for 
2009-14’, October, p. 122. For the latest benchmarking exercise, which is part of PR18, the ORR did not 
perform an international benchmarking exercise. 
94 For example, in its RIIO-ED1 price control, the Office of Gas and Electricity Markets (Ofgem) applied a 
correction for regional labour costs within the UK to its cost base. See Ofgem (2014), ‘RIIO-ED1 final 
determinations for the slow-track electricity distribution companies Business plan expenditure assessment’, 
28 November, p. 41. 

https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=prc_ppp_ind&lang=en
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• relatedly, the type of cost that is subject to the PLI adjustment (e.g. OPEX or 
all costs?); 

The estimated efficiency scores for individual TSOs are likely to be highly 
sensitive to these choices, illustrating the need for sensitivities around the 
choices. We have estimated the efficiency score of each TSO under the 
following price-level sensitivities. 

• Choice of index. We considered indices relating to overall GDP, 
construction, civil engineering works, total goods, capital goods and total 
services to adjust expenditure.  

• Time of adjustment. We considered adjusting expenditure using the PLI for 
2017, an average based on the last five years of data, an average based on 
the last 10 years of data, and an average based on all of the PLI data that 
was available.  

• Proportion of adjustment. Sumicsid makes no adjustment for CAPEX. 
However, as discussed above, a 100% adjustment has regulatory 
precedent. We considered adjusting 60%, 80% and 100% of CAPEX for 
difference in price levels. For OPEX, Sumicsid adjusts labour costs, which is 
approximately 5.9% of TOTEX; however, as discussed above, a 100% 
adjustment has regulatory precedent. As such, we considered adjusting 
60%, 80% and 100% of OPEX for difference in price levels. 

As a central scenario, we propose to adjust 100% of OPEX with the PLI for 
overall GDP and 100% of CAPEX with the PLI for civil engineering. 
Furthermore, we have chosen the five-year average of 2013–17 as the base 
year for the PLI adjustment. These are justified below. 

• As OPEX contains a wide array of goods and services bought by TSOs (e.g. 
grid maintenance, grid planning and business support activities), the PLI for 
overall GDP is a reasonable compromise between the higher price-level 
differences in services and the lower price-level differences in goods.  

• For CAPEX, the basket of goods is different. This cost category contains 
mainly investment projects and thus fewer (but still a considerable amount 
of) services. The ESA category that matches these expenses the closest is 
‘civil engineering works’. This is defined by Eurostat as ‘a construction not 
classified under buildings, for example railways, roads, bridges, highways, 
airport runways and dams’.95 An alternative would be to use the 
‘construction’ category, but this will contain residential construction as well, 
which is likely less relevant for the specialised works required by TSOs.96 

• Taking an average over the time period is a compromise that takes into 
account the volatility of PLIs and the fact that contracts and investments are 
usually multi-year commitments whose price is not set in the year they are 
recorded. 

                                                
the Office of Gas and Electricity Markets (Ofgem) applied a correction for regional labour costs within the UK 
to its cost base. See Ofgem (2014), ‘RIIO-ED1 final determinations for the slow-track electricity distribution 
companies Business plan expenditure assessment’, 28 November, p. 41. 
95 Eurostat (2018), ‘Glossary: Civil engineering work’, available at:  
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Civil_engineering_work, accessed 5 
February 2020. 
96 The range and standard deviation of the PLI for construction is roughly 20% wider than the corresponding 
values for civil engineering. 

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Civil_engineering_work
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Figure 3.3 shows the estimated efficiency scores for each TSO in the 
sensitivities we have considered. Adjusting the method of accounting for input 
prices has a significant impact on most TSOs’ efficiency scores. For example: 

• Two TSOs that are assessed to be inefficient by Sumicsid become efficient 
in at least one PLI adjustment.  

• Furthermore, five of the seven TSOs estimated to be efficient by Sumicsid 
become inefficient in at least one of the sensitivities. Indeed, one TSO that 
is estimated to be 100% efficient in Sumicsid’s analysis is estimated to be 
78% efficient in our central PLI scenario. Thus, Sumicsid’s peers may well 
be not on the best-practice frontier. 

Figure 3.3 Impact of PLI adjustments 

 

Source: Oxera analysis.  

Clearly, the method of accounting for price-level differences is not a trivial 
decision and must be robustly justified. In addition, some sensitivity analysis 
should be undertaken. Sumicsid has not sufficiently motivated its choices in its 
final outputs and has therefore potentially conflated the estimated efficiency 
scores with price-level differences. Our analysis demonstrates that the impact 
of the price-level adjustments can be material for many of the TSOs. 

3.4 Indirect cost allocation mechanism 

3.4.1 Description of the issue 

Like most large businesses, TSOs have overarching support functions 
(described as ‘Indirect Support’ by Sumicsid), such as finance, IT support and 
human resources. Some of these support functions may be directly relevant to 
specific activities, but others may be sufficiently general that they cannot be 
allocated to any one activity.  

As many TSOs perform activities that are beyond the scope of the TCB18 
benchmarking project, some of the costs incurred in ‘Indirect Support’ will be 
driven by activities that are not assessed. For example, a TSO that undertakes 
a significant amount of system operations and market facilitation (activities that 
are outside of the scope of benchmarking) may have a larger expenditure on IT 
support than other TSOs that do not undertake such activities.  

Thus, to avoid a TSO’s efficiency score being driven by activities deemed 
outside the scope of the study, indirect costs need to be allocated to activities 
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within the scope of benchmarking. Ideally, the allocation rule should consider 
how much of the indirect costs are driven by each activity (i.e. where the 
indirect expenditure is incurred).  

3.4.2 Sumicsid’s approach to allocating indirect expenditure 

Sumicsid’s allocation rule uses the proportion of all costs except depreciation 
and energy relative to these costs across activities.97  

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑃𝑀 =
𝑂𝑃𝐸𝑋𝑇𝑃𝑀 − 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑇𝑃𝑀 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑃𝑀

𝑂𝑃𝐸𝑋𝑡𝑜𝑡𝑎𝑙 − 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡𝑎𝑙
∗ 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑡𝑜𝑡𝑎𝑙 

Where the subscripts 𝑇𝑃𝑀 and 𝑡𝑜𝑡𝑎𝑙 refer to in-scope (i.e. transport, planning 
and maintenance) and TOTEX, respectively. Note that this allocation rule 
includes cost items such as taxes and research and development, which are 
not part of the efficiency benchmarking. 

Sumicsid states that it has tested ‘several allocation methods’ for indirect 
expenditure.98 However, sensitivities regarding the allocation rule were not 
presented in any of its reports. 

3.4.3 Critique and proposed solution 

Sumicsid’s allocation rule is never justified in its main report. In some cases, 
the allocation of indirect expenditure is driven by large cost items that are 
unrelated to where indirect costs are incurred. For example, one TSO has a 
large tax payment in an activity that is considered to be out-of-scope. Because 
of this, a large percentage of indirect expenditure is allocated to this out-of-
scope activity, even though the tax payment itself should not be a material 
driver of indirect expenditure.  

As a solution to this issue, we consider that it would be more robust to only use 
in-scope costs to allocate indirect OPEX. This would avoid the risk that indirect 
costs are allocated to activities based on cost items that are unrelated to 
indirect expenditure. As a sensitivity, we have also considered the possibility of 
excluding or including all indirect costs in the benchmarking. The assumptions 
behind such allocations are explained below. 

• Excluding all indirect costs—this assumes that either (i) there is no trade-off 
between indirect costs and other expenditure items such that they can be 
excluded without tainting the analysis of other areas of expenditure; (ii) 
indirect costs are efficiently incurred by TSOs; or (iii) indirect costs are 
incurred at the same level of efficiency as other expenditure items.  

• Including all indirect costs—this assumes that indirect costs are a ‘fixed 
cost’ that do not vary significantly across TSOs that perform different 
activities. For example, a TSO that only undertakes in-scope activities may 
spend the same amount on central management (e.g. CEO compensation) 
as a TSO that undertakes more activities. This is equivalent to assuming 
there are significant economies of scope with respect to indirect 
expenditure. 

We are aware that these sensitivities suffer from limitations and do not 
consider the controllability of indirect expenditure or the trade-offs across the 
activities that TSOs undertake. These are intended to serve as a reference 

                                                
97 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 4.97. 
98 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 4.97. 
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points as to the maximum possible impact of sensitivities to indirect costs on 
overall efficiency. 

Figure 3.4 shows the impact of different allocation rules on TSOs’ estimated 
efficiencies. We note that: 

• most TSOs’ estimated efficiency scores are insensitive to the allocation of 
indirect expenditure; 

• one TSO estimated to be efficient in the TCB18 study becomes inefficient 
under one allocation rule; 

• the allocation rule has a significant impact for one TSO, the eighth from the 
left, where the inclusion of a large levy results in only 0.8% of indirect costs 
being allocated to benchmarked scope activities, despite in-scope activities 
constituting 25% of benchmarked OPEX. 

Figure 3.4 Impact of different indirect cost allocation rules 

 

Source: Oxera analysis. 

In TCB18, the allocation of indirect expenditure has a small impact on the 
efficiency of most TSOs. However, the allocation of expenditure to 
benchmarked activities is a conceptually important issue and may have a more 
material impact on a different sample. It is therefore essential that the 
allocation rules are robustly justified.  
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4 TCB18 model development 

In this section, we critically review Sumicsid’s approach to model development. 
As Sumicsid did not share modelling codes with the TSOs, our review is limited 
to what is described in the final outputs. We note the following. 

• The cost driver analysis that Sumicsid states it has followed suffers from 
empirical and theoretical flaws (section 4.1). 

• Sumicsid does not appear to have tested whether its final model is sensitive 
to changes in the sample (section 4.2). 

• Sumicsid’s decision to restrict the set of outputs to asset-based data is 
inconsistent with academic and regulatory literature and is not justified by 
empirical evidence or conceptual reasoning (section 4.3). 

• The analysis used to derive OPEX and CAPEX weights in the construction 
of NormGrid is not presented in the final outputs. Furthermore, our 
replication of Sumicsid’s stated approach of deriving NormGrid weights 
does not support the weights Sumicsid used (section 4.4). 

• Sumicsid’s adjustment of NormGrid for environmental factors is not justified 
in its final outputs and is not supported by empirical evidence (section 4.5). 

4.1 Model development—cost driver analysis 

4.1.1 Description of the issue 

Operating, maintaining and enhancing an electricity transmission network is an 
extremely complex operation. Finding a set of cost drivers that can completely 
describe the functions of a TSO is therefore a difficult task, and a robust 
model-development process must be in place to ensure that the results from 
the empirical analysis are robust. The model-development process should take 
into account both the operational and economic rationale for including specific 
cost drivers, as well as their statistical validity. In performing the analysis, the 
assumptions of any statistical model should be justified and, where possible, 
empirically tested.  

4.1.2 Sumicsid’s approach to cost driver analysis 

Sumicsid used three statistical estimators to examine the relationship between 
costs and outputs: 

• Ordinary Least Squares (OLS) regression; 

• OLS regression excluding outliers as defined by the cooks distance metric; 

• Robust OLS (ROLS) regression (an estimator where observations far from 
the regression line are given less weight).99 

In its workshop slides, Sumicsid states that it uses Lasso regression100 to 
justify its use of NormGrid and detect and validate alternative output variables, 
but this analysis is not presented in the final outputs.  

                                                
99 Sumicsid (2019), ‘CEER-TCB18 project Model Specification ELEC V1.3’, February, slide 31. 
100 Lasso regression is a type of linear regression aimed at reducing model size (i.e. the number of cost 
drivers). Lasso regression introduces a penalty term for non-zero parameter estimates, which causes cost 
drivers with small or statistically insignificant coefficients to be set to zero (i.e. excluded from the model). A 
larger penalty term leads to more cost drivers being excluded from the model and the size of the penalty 
term is within the control of the practitioner. If the penalty term is set to zero, the Lasso regression is 
equivalent to OLS and no cost drivers are excluded from the model. 
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4.1.3 Critique and proposed solution 

It is not clear from the TCB18 report exactly which cost drivers were 
considered in the project and how the final set of cost drivers were derived. 
There is insufficient detail in the report for us to robustly replicate and review 
the model-development process. However, given (i) the results published in 
final report (and other associated outputs); (ii) the unjustified restriction of the 
model to three outputs; (iii) the inappropriate functional form assumed in the 
modelling; and (iv) the limited consultation with the TSO group on these; we 
consider that Sumicsid’s model-development process was flawed. 

Alternative models are presented in the workshop slides, but the slides do not 
contain the final model used in the main report, so it is unclear how this final 
model was selected. Furthermore, the statistical assessment of the final model 
is limited to two tables in the final outputs: one table in the main report shows 
the adjusted R-squared for the model (and how the adjusted R-squared 
changes as outputs are added sequentially) and one table in the TSO-specific 
report shows the estimated coefficients in the final model. 

In general, the adjusted R-squared can provide useful information as to how 
well variations in cost drivers can explain variations in average costs. However, 
the adjusted R-squared is not the only parameter of interest in cost driver 
analysis—it is also essential that the estimated relationships between costs 
and cost drivers are in line with operational intuition and statistically significant. 
Furthermore, the value of adjusted R-squared in a regression of costs against 
NormGrid is not informative. NormGrid is a representation of the average costs 
required to build and operate a particular asset base and will therefore be 
highly correlated with observed costs by construction.  

The use of ROLS 

Sumicsid’s use of ROLS is inappropriate, especially when only the results from 
this estimation technique are presented. This estimator explicitly gives less to 
observations that are further from the regression line and the adjusted R2 is 
therefore inflated. More fundamentally, both the OLS and ROLS used by 
Sumicsid for cost driver analysis assume that the error term is symmetrical and 
normally distributed. However, if Sumicsid expects that some TSOs are 
operating inefficiently, the error term will be skewed, as shown in Box 4.1. Any 
statistical inference that Sumicsid may have performed in selecting cost drivers 
is therefore inconclusive.  



 

 

Final A critical assessment of TCB18 electricity  
Oxera 

47 

 

Box 4.1 Statistical inference in the presence of inefficiency 

If inefficiency is present in the sample, the residual term of an OLS 
regression represents two effects. The first effect is pure, normally 
distributed statistical noise. Statistical noise can have a positive or negative 
impact on TOTEX, but the mean and median residual will equal zero. The 
second effect is the inefficiency effect. A TSO’s inefficiency will equal zero if 
it is fully efficient and will be greater than zero if it is inefficient. By definition, 
a firm cannot be more than fully efficient and the distribution of inefficiency in 
therefore one-sided, reflecting the higher costs of an inefficient firm relative 
to a fully efficient firm. A comparison of the distribution of the statistical noise 
and inefficiency components of the error term is shown in the figure below.  

 

Source: Oxera. 

The total error term therefore represents a combination (i.e. sum) of these 
two components and will be asymmetric, as shown in the figure below. 

 

Source: Oxera. 

Our replication of Sumicsid’s analysis 

We have been unable to exactly reconstruct all of the data used by Sumicsid. 
In particular, the historical (i.e. pre-2017) data we have received for weighted 
lines does not match that used by Sumicsid.101 As such, any replication of 

                                                
101 Sumicsid’s data here implies an unreasonable growth in this variable of 9.2% p.a. whereas we arrive at a 
more realistic 3.3% p.a.. 
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analysis that uses the full dataset is expected to be different to what Sumicsid 
presents in its final outputs.  

Table 4.1 shows our replication of Sumicsid’s full model. Given the 
uncertainties in the data and ambiguities in the report, we have conducted a 
number of sensitivities regarding the sample size and time period of analysis 
(discussed below). However, we are unable to validate the analysis presented 
in Sumicsid’s final outputs.  

• Full sample. Here, we estimate the econometric model using all 81 
observations,102 as Sumicsid stated it used in the individual reports.103 The 
estimated coefficient on NormGrid is negative and statistically insignificant, 
which is operationally unintuitive. 

• 2017 only. As we have identified an inconsistency between the dataset we 
have access to and that which Sumicsid states it has used for years prior to 
2017, we have estimated the model using data from 2017 only, where the 
two datasets are consistent.104 The coefficients in this model are aligned 
with our replication on the full sample, i.e. they remain unintuitive. 

• One TSO removed. Sumicsid states in its main report that one TSO is 
‘permanently removed from the reference set’ as it is almost always an 
extreme outlier.105 We therefore estimate the model with this TSO removed 
from the sample. The coefficient on NormGrid becomes positive and 
statistically significant and is more consistent with the results published in 
individual reports. However, the coefficient on weighted lines becomes 
negative and insignificant, which is inconsistent with operational intuition. 

Table 4.1  ROLS regression results 
 

Sumicsid Full sample 2017 only One TSO 
removed 

One TSO 
removed, 
2017 only 

Adj. NormGrid 0.302*** -0.1 -0.13 0.46*** -0.02 

Transformer Power 4196*** 3839*** 4776*** 2839*** 4502*** 

Weighted Lines 16770*** 66920*** 57482*** -2605 49673*** 

Adj. R-squared 0.98 0.99 0.99 0.99 0.99 

Observations 81 81 17 76 16 

Source: Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, 
Table 3.1. Oxera analysis. 

Our inability to exactly replicate Sumicsid’s analysis points to several potential 
flaws in both the TCB18 procedure and the final model itself, including: 

• the final report is not sufficiently detailed for third parties to follow, replicate 
and critically assess the analysis undertaken by Sumicsid; 

• Sumicsid’s non-publication of modelling codes from the final set of outputs 
compounds the issue highlighted above; 

                                                
102 Note that while there are 17 TSOs in the 2017 sample, the sample for 2013–2016 contains only 16 TSOs, 
hence the full sample is an unbalanced panel of 81 observations. 
103 See Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, Table 3.1. 
104 We have matched the 2017 used in our analysis with the data presented in the individual reports. 
Furthermore, we are able to replicate Sumicsid’s DEA model results that are estimated using the 2017 data 
only. For this reason, we are confident that we have access to the complete data for the year 2017. 
105 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 30. 
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• the model is sensitive to changes in the historical data (specifically, the data 
for weighted lines). 

• the chosen model is highly sensitive to the inclusion or exclusion of 
particular TSOs, indicating that the model is not a good predictor of industry-
wide costs; 

• the model is highly sensitive to the inclusion or exclusion of particular years, 
indicating that the relationship between cost and cost drivers may be 
different in different time periods. 

The latter two points are discussed in more detail in section 4.2. 

The choice of functional form 

Sumicsid made three choices regarding the functional form of its cost diver 
analysis that are not robustly validated: 

• the intercept is set to zero, instead of being estimated by the model; 

• the model is estimated in levels rather than logarithms (logs); 

• there is no test for the presence of more flexible relationships in the data 
(e.g. quadratic relationships or interactions). 

A satisfying analysis regarding the points on functional form may include the 
following: 

• Visual inspection—this can, for example, include scatterplots of costs 
against cost drivers to form an initial understanding of the heterogeneity and 
possible non-linear form of the relationship; 

• Statistical analysis—this initial understanding can then be confirmed, 
supplemented or refuted by specialized statistical tests. 

Supressing the intercept 

Sumicsid has not justified why it has forced the intercept in the regression to be 
equal to zero. Supressing the intercept assumes that there are no ‘fixed costs’ 
to the operations the transmission network, which in turn assumes that there 
are constant returns to scale. This is inconsistent with the non-decreasing 
returns-to-scale assumption applied by Sumicsid in its estimation of efficiency 
scores in the DEA model.  

Modelling in levels 

The choice to model in levels rather than transforming the data with logarithms 
is not supported with visual or statistical evidence in the final outputs. A 
justification of this decision is required as it represents a departure from the 
common practice in regulatory benchmarking to model in logarithms.106 
Modelling in logs generally alleviates heteroskedasticity107 and makes 
coefficients more easily interpretable.108  

                                                
106 For example Ofwat, Ofgem and the Bundesnetzagentur model in logs. For example. see Ofwat(2019), 
‘PR19 final determinations: Securing cost efficiency technical appendix‘, December. 
107 Heteroskedasticity occurs when the standard error of the residual is correlated with the cost drivers in the 
model. If heteroskedasticity is present, then the standard errors on the estimated coefficients are biased. In 
such cases, statistical inference is not possible. 
108 When modelling in logs, we can say that an additional 1% increase in outputs would be associated with a 
b% increase in inputs. By contrast, this interpretation is scale-dependent in levels. 
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An example of heteroskedasticity issues in TCB18 can be seen in Figure 4.1. A 
visual inspection of TOTEX against NormGrid reveals that two TSOs are 
significantly larger than the rest of the sample and appear to be further from 
the regression line. This may lead to biased results, as the two large TSOs 
have a large influence on the shape of the regression line. It is evident from the 
figure that this issue is less pronounced if the data is transformed using 
logarithms.  

Figure 4.1  NormGrid–TOTEX comparison 

 

Source: Oxera analysis. 

The results in Table 4.2 show that statistical evidence also does not support 
the choice to model in levels. A statistical PE-test of the logarithmic model 
against the model in levels is inconclusive.109 In fact the test indicates that 
neither form is sufficient. In light of this, a prudent approach would be to model 
in logarithms due to the concerns regarding heteroskedasticity and precedent 
raised above. 

Table 4.2  p-values of the PE test 

 Intercept set to zero 
(Sumicsid’s approach) 

Intercept not set to zero 

Linear Model 0.003 0.006 

Logarithmic Model 1.332e-11 3.728e-09 

 Source: Oxera analysis. 

Table 4.3 shows Sumicsid’s model when it is re-estimated on log-transformed 
data. Several key relationships between costs and cost drivers have changed. 
In logarithms, the coefficient on NormGrid is positive and statistically 
significant. However, the coefficient on weighted lines becomes negative and 
statistically insignificant. This suggests that if Sumicsid had modelled in logs, 
an alternative set of cost drivers may have been selected.  

                                                
109 The PE-test considers whether the difference in fitted values between the models is an explanatory factor. 
It is proposed in: J. MacKinnon, H. White, R. Davidson (1983). Tests for Model Specification in the Presence 
of Alternative Hypotheses: Some Further Results. Journal of Econometrics, 21, pp. 53–70. 
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Table 4.3 Regression results in logs 

 Intercept set to zero Intercept not set to 
zero 

 Levels Logs Levels Logs 

Intercept   -7557411.36 3.12** 

Adj. NormGrid -0.1 0.74*** -0.05 0.50*** 

Transformer Power 3838.68*** 0.47*** 3871.44*** 0.63*** 

Weighted lines 66920.36*** -0.01* 62399.85*** -0.01* 

Adj. R-squared 0.98 0.99 0.97 0.88 

Observations 81 81 81 81 

Source: Oxera analysis. 

Mis-specification 

An initial visual inspection of the scatterplots (Figure 4.1) does not reveal a 
clear nonlinear relationship. However, as there are many possible relationships 
and interactions to consider, visual inspection is insufficient to be conclusive. 
The RESET test is a statistical test designed to detect the presence of non-
linear relationships variables.110 When performed on Sumicsid’s model, the 
RESET test does not indicate significant mis-specification when the model is 
estimated in levels. However, there is evidence of mis-specification if the 
model is estimated in logarithms. Where mis-specification is detected, a more 
flexible functional form—for example, one that includes some interactions and 
squared terms—may be needed. This is essential in the selection of cost 
drivers; cost drivers that may fit the data poorly in a linear model may explain 
the data well in more flexible models and would have thus been chosen as cost 
drivers for the benchmarking model if cost driver analysis was performed in a 
more appropriate functional form.  

Table 4.4  p-values of the RESET test 

 Intercept set to zero 
(Sumicsid’s approach) 

Intercept not set to zero 

Linear model 0.36 0.47 

Logarithmic model 0.04 0.04 

 Source: Oxera analysis. 

Overall, there is no conclusive evidence on the functional form. Therefore, 
there is also no evidence to support Sumicsid’s departure from common 
practice. The choice of functional form impacts cost driver analysis and may 
thus change the composition of the benchmarking model. 

Further to our concerns regarding Sumicsid’s choice of estimator and 
functional form, a robust procedure should also include the following. 

• Sensitivity analysis. The final model should include outputs that can 
explain differences in industry-wide expenditure. As such, it should not be 

                                                
110 The RESET test considers if powers of the residuals can explain the dependent variable. It is proposed in: 
Ramsey. J. B. (1969), ‘Tests for Specification Errors in Classical Linear Least-Squares Regression 
Analysis’. Journal of the Royal Statistical Society, Series B 31, pp. 350–71. 
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sensitive to the inclusion or exclusion of specific TSOs or specific time 
periods of analysis. 

• Valid estimation approaches. The cost driver analysis should include 
alternative estimation procedures that can explicitly account for the 
skewness of the residual terms, such as SFA.  

• Transparency. At the very least, the process of model selection should be 
well-documented in the final outputs. If modelling codes are also shared, 
this could allow third parties to follow exactly what has been done and 
identify any errors or inconsistencies in the modelling process.111 

4.2 Model development—sensitivity to the sample selected 

4.2.1 Description of the issue 

The final model should include outputs that can explain differences in industry-
wide expenditure. As such, it should not be sensitive to the inclusion or 
exclusion of specific TSOs or specific time periods of analysis.  

4.2.2 Sumicsid’s approach 

Sumicsid does not present any analysis in its final outputs that demonstrates 
that its model is insensitive to the data used in the modelling. However, it 
removes one TSO from the sample before estimating efficiency scores 
because:  

The analyses of the raw data as well as the analysis of a series of model 
specifications, i.e. models with alternative costs drivers, suggest that one of the 
17 TSOs almost always is an extreme outlier.112 

It is unclear how exactly this TSO was identified as an ‘extreme outlier’. 

4.2.3 Critique and proposed solution 

Based on the fact that one TSO is permanently removed from the reference 
set, it seems that Sumicsid conducted some analysis regarding the influence of 
single TSOs on the estimated model. Sumicsid states that this TSO was an 
‘extreme outlier’ in ‘a series of alternative model specifications’. 

However, it is unclear what tests were actually performed and how exactly this 
one TSO was identified as an outlier. It is not clear if this TSO was removed on 
the basis of econometric or DEA results.  

For our assessment of individual TSO’s influence on the econometric model, 
we exclude one TSO from the dataset at a time and estimate the econometric 
model on the reduced dataset, containing the observations for the remaining 
16 TSOs. Thus we obtain 17 estimates for each parameter. This provides us 
with the range of estimates that is supported by the reduced datasets given in 
Table 4.5. If the econometric model was robust, we would expect the 
relationship between costs and cost drivers to be stable. In the current case 
the range of supported coefficients is wide and includes zero for two of 
Sumicsid’s cost drivers. This means that on average, an increase in the cost 
driver is not associated with an increase in costs. Thus the relationship 

                                                
111 For example, Ofwat made an error in its modelling of a specific wastewater programme in its draft 
determination. Upon release of the Excel analysis, the error was spotted by water companies and their 
consultants. The error was then corrected for the final determination. See Ofwat (2019), ‘PR19 final 
determinations: Securing cost efficiency technical appendix‘, December, p. 97. 
112 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 35. 
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between the costs and cost drivers in Sumicsid’s model is highly dependent on 
the exact sample of TSOs used and unreliable.  

Table 4.5  Sensitivity of ‘robust regression’ results to exclusion of one 
TSO 

 Minimum Median Maximum 

Intercept -13713113 -9717442 2641704 

Adj. NormGrid -0.14 -0.09 0.54 

Transformer Power 2629.86 4103.23 4535.93 

Weighted Lines -3498.12 64817.61 71005.72 

Observations 761 761 761 

Note: 1 For one TSO only one year of data is available; if that TSO is removed, we would have 
80 observations instead of 76. 

Source: Oxera analysis. 

The impact of a single TSO on DEA efficiencies is assessed through the 
dominance test. We provide our assessment of Sumicsid’s dominance test in 
section 5.2. 

2017 was likely chosen as the base year for the analysis as it was the latest 
year with data available when the TCB18 process began. However, all the 
other years of data in the TCB18 dataset are similarly valid for benchmarking. 
Sumicsid should have tested if the results hold in different base years as well. 

We can assess the impact of the base year by estimating the econometric 
model on one year of data at a time. This way we can verify if the proposed 
relationship between costs and cost drivers is in fact stable over time. As can 
be seen in Table 4.6 below, the relationship is more stable over time than it is 
to the exclusion of some TSOs. The coefficient on NormGrid switches from 
positive to negative when using the data from 2013, and the coefficient on 
weighted lines is statistically insignificant. 

Table 4.6  Sensitivity of ‘robust regression’ results to year of data 
used 

 2013 only 2014 only 2015 only 2016 only 2017 only 

Intercept -1893375 -9836324 -11567559 -8315200 -5676202 

Adj. NormGrid 0.3 -0.08 -0.1 -0.09 -0.11 

Transformer 
Power 

2580*** 3628*** 3858*** 4486*** 4748*** 

Weighted lines 16246 70372*** 70865*** 60619*** 56749*** 

Observations 16 16 16 16 17 

Source: Oxera analysis. 

Despite the coefficients being relatively consistent over time, the DEA results 
for some TSOs are still highly sensitive to the base year of the analysis, as is 
evident from Figure 4.2. In particular: 

• one TSO is estimated to be fully efficient from 2013–15, but is then 
estimated to be inefficient in 2016–17; 

• one TSO that is a peer in Sumicsid’s analysis is estimated to be 82% 
efficient prior to 2016; 
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• several more TSOs are significantly more efficient in 2017 than in earlier 
years. One TSO improves its score by 31 percentage points from 2013–17. 

Figure 4.2  Sensitivity of efficiencies to base year 

Source: Oxera analysis. 

Such large changes in efficiency should not occur if the model is robust. 
However, they may occur because: 

• relevant cost drivers may be missing, e.g. declining asset health may lead to 
higher expenditure while asset characteristics (and thus Sumicsid’s cost 
drivers) remain unchanged;  

• the costs do not react to changes in Sumicsid’s cost drivers; 

• there may be data issues, e.g. the expenditures and assets are not 
recorded in the same year; 

• Sumicsid’s cost normalisation may have understated input price inflation, 
thus some large recent investment projects may have been inefficient, 
according to Sumicsid’s benchmarking model. 

It is especially important to robustly justify the occurrence of large swings and 
how this swing in estimated efficiency also coincided with a change in the 
management efficiency of the TSOs. This was not considered by Sumicsid, 
and the causes of the swings remain unexplained. 

4.3 Model development—selecting candidate cost drivers 

4.3.1 Description of the Issue 

In a regulatory setting, it is considered best practice for a regulator to define a 
set of cost activities, suggest variables to capture each activity and invite 
participating companies to critique the variables and to suggest alternatives. 
For example, in advance of its determinations, Ofwat consulted the water 
industry on the use of econometric models to assess expenditure.113 In 
response to feedback from the industry, it amended its modelling approach in 
later stages of the price review.114 As part of its upcoming RIIO-2 price control 
the Office of Gas and Electricity Markets (Ofgem) has asked companies to 

                                                
113 Ofwat (2018), ‘Cost assessment for PR19: a consultation on econometric cost modelling’, March. 
114 Ofwat (2019), ‘Supplementary technical appendix: Econometric approach’, January. 
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express their views on the appropriate outputs for each category.115 This 
process of iterative consultations limits the risk that significant cost drivers are 
insufficiently considered. It also gives regulators an opportunity to respond to 
critique from the industry and, where appropriate, justify their choices with 
empirical evidence. 

In consultation with the TSOs participating in this shadow benchmark, we 
determined that key drivers of expenditure in the electricity transmission 
industry include energy transmitted, network length, peak demand, load 
density, energy not supplied, network availability, connected volumes, 
variability of energy flows, asset health, and the amount of power supplied by 
renewable sources. 

4.3.2 Sumicsid’s approach to selecting candidate cost drivers 

Sumicsid does not consider the output parameters mentioned above and has 
instead restricted itself to using asset-based variables as cost drivers.  

Sumicsid discusses outputs such as energy delivered and peak load in its main 
report,116 but it does not present analysis to justify excluding these outputs in 
the model-development process. 

4.3.3 Critique and proposed solution 

One issue with an asset-based model is that it can create perverse 
incentives—for example, it could lead to TSOs ‘gaming’ the benchmarking 
model by, for example, installing unnecessary assets. Sumicsid acknowledges 
this in its main report,117 and we agree with Sumicsid’s view that this specific 
type of gaming seems unlikely in the current context.  

However, the use of asset measures such as NormGrid in benchmarking 
models may still be problematic. For example, a TSO facing increasingly 
volatile energy supply due to increased generation from renewable sources of 
energy may consider two solutions with similar levels of investment: one that 
involves investment in assets to increase network capacity and one that 
involves investment in software to manage energy supply and demand. The 
former solution will materially increase the size of the asset base and the latter 
will not. A TSO choosing the latter solution will therefore be disadvantaged in a 
model that controls for NormGrid, regardless of the ‘true’ efficiency of the 
investment. Put more broadly, a company that deploys a more expensive asset 
base than another—when both face the same contextual and demand levels—
would appear more efficient, when in fact it is less efficient, even if both have 
exactly the same TOTEX level. Thus, while assets can be used in comparing 
the relative efficiency of TSOs, it is necessary to cross-check these models 
with alternatives that control for TSOs’ outputs. 

NormGrid is a particularly unusual driver, even excluding the general 
arguments relating to the use of asset-based outputs outlined above. NormGrid 
is itself a measure of average costs, so the interpretation of a regression output 
of TOTEX (costs) against NormGrid (a measure of costs) is unclear. 

As for the other outputs, Sumicsid states that transformer power and weighted 
lines are highly correlated with output factors such as capacity and routing 

                                                
115 I.e. Ofgem (2019), ‘RIIO-2 tools for cost assessment’, June 
116 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 4.81. 
117 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 4.81. 
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complexity, respectively.118 These statements should be substantiated with 
statistical evidence or operational evidence in the final report or its appendices; 
however, they are not. It is concerning that using close substitutes for these 
outputs can significantly change the estimated efficiency of some TSOs. For 
example, Figure 4.3 below shows TSOs’ estimated efficiencies when 
transformer power is replaced with the power of circuit ends. We note that: 

• two TSOs that are identified as efficient in Sumicsid’s model become 
inefficient with the alternative capacity cost driver; 

• one TSO’s efficiency score reduces by 39 percentage points with the 
alternative measure; 

• one TSO increases its efficiency by 15 percentage points. 

Figure 4.3  Efficiencies using the power of circuit ends 

  

Source: Oxera analysis. 

Developing a cost function (i.e. costs as a function of outputs and input prices), 
for benchmarking the TSOs, as consistent with the academic literature, is not 
feasible for this shadow benchmarking study. The dataset constructed by 
Sumicsid does not contain output variables that would allow us to perform a 
complete model-development process. Collecting, validating and processing 
data on additional cost drivers is beyond the scope of the shadow 
benchmarking exercise. 

Nevertheless, it is a significant omission that the cost drivers in Sumicsid’s final 
model were not validated through a comparison to output parameters. For 
example, the correlation between asset capacity (either transformer or power 
of circuit ends) and measures of output (such as an appropriate measure of 
peak demand) could provide useful evidence in supporting the use of one 
capacity measure over another, even if Sumicsid does not directly include 
outputs in the model specification. 

                                                
118 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 5.05. 
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4.4 Aggregation of NormGrid 

4.4.1 Description of the issue 

The TCB18 benchmarking exercise uses NormGrid as the primary output 
variable. As NormGrid represents a weighted sum of different asset classes, it 
is necessary that the weights on each asset are justified. This is particularly 
important if TSOs deploy assets in very different ratios to each other. If the 
weights are inappropriate, a derived variable such as NormGrid may mistake 
heterogeneity in operating characteristics with inefficiency. 

4.4.2 Sumicsid’s approach to aggregating asset classes 

Sumicsid chooses the weights on assets based on an average cost estimate of 
each asset.119 In the appendices to its main report, Sumicsid states: 

The calibration of the asset weight systems is made through linear regression 
towards the Capex and Opex data obtained in the project. This step scales the 
relative NormGrid metric towards average practice (not best practice) such that the 
relevant cost measures are attributed to the size proxy. 

The results of this regression are not part of the final report or its appendices 
and there appears to have been a separate treatment of OPEX and CAPEX 
weights. Specifically:  

• CAPEX weights appear to have been undertaken by asset category, as the 
groups have different weights; 

• OPEX weights seem to have been estimated on an overall basis rather than 
by asset category.120 

4.4.3 Critique and proposed solution 

As illustrated in Figure 4.4, the distribution of assets by category across TSOs 
is heterogenous. For example, the share of Lines in NormGrid varies from 80% 
to 27% across the sample. Because of this, the weight attached to an asset 
class may change the relative positions of the TSOs, thus impacting estimated 
efficiencies. 

Figure 4.4 Breakdown of NormGrid by asset categories 

 

Source: Oxera analysis.  

                                                
119 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, section 4.72, p. 25. 
120 All assets have the same NormGrid OPEX weight. 
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We recognise that if NormGrid is to be used as one cost driver, some method 
of aggregation is required. However, the derivation of weights must be clearly 
described and robustly justified in the final outputs.  

Table 4.7 shows the estimated coefficients from a regression of the four 
predominant asset classes in NormGrid on TOTEX, alongside the weights 
used by Sumicsid.121 As Sumicsid states that they used the results of a 
regression on OPEX and CAPEX, we also regress asset classes’ NormGrid 
OPEX and CAPEX components on OPEX and CAPEX as a sensitivity. DEA 
results are generally consistent with our TOTEX approach, however some 
coefficients are insignificant in the CAPEX regression.  

The CAPEX weight Sumicsid attaches to lines and cables is similar to that 
implied by a regression of the assets on TOTEX. However, the weight on 
transformers and (to a lesser extent) circuit ends are less similar. Furthermore, 
the weights implied by the OPEX and CAPEX regressions (bottom two rows) 
are very different to the OPEX and CAPEX weights Sumicsid uses. As these 
regressions are not presented in Sumicsid’s outputs, we are not able to identify 
the causes for such large discrepancies.  

In addition, Sumicsid’s weights do not account for the uncertainty with which 
the coefficients are estimated. As can be seen in Table 4.7, the standard errors 
on the estimated coefficients (particularly on cables, circuit ends and 
transformer power) are large.  

Table 4.7 NormGrid aggregation weights 

 Lines Cables Circuit Ends Transformer 

Sumicsid’s 
weight (CAPEX) 

15.79 

 

16.99 

 

17.83 

 

18.91 

 

Sumicsid’s 
weight (OPEX) 

437.08 437.08 437.08 437.08 

Regression 
coefficient 
(TOTEX) 

15.57*** 

(2.28) 

17.4** 

(8.44) 

13.52** 

(6.08) 

292*** 

(35.5) 

Regression 
coefficient 
(OPEX) 

1789.6*** 

(111.0) 

19142.9*** 

(4515.8) 

217.07*** 

(65.1) 

6595.5*** 

(1034.1) 

Regression 
coefficient 
(CAPEX) 

7.1*** 

(2.16) 

11.2 

(7.91) 

9.1 

(5.85) 

340.7*** 

(33.5) 

Note: Standard errors in parentheses, Stars indicate statistical significance at the 1% (***), 5% 
(**) and 10% (*) level.  

Source: Oxera analysis. 

Figure 4.5 shows the estimated efficiency scores when the NormGrid weights 
are derived from the TOTEX regression in Table 4.7. We also present the 
range of estimated efficiency scores implied by the confidence interval on the 
estimated coefficients. The figure shows that:  

• the impact of changing the NormGrid weights is small for most TSOs;122 

                                                
121 We find a negative and significant intercept in this regression. This is not an issue, since the focus of the 
investigation is the relative weight of the asset classes. 
122 This may be driven by the lack of importance attached to NormGrid in the DEA model. This is discussed 
further in section 5.3. 
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• the average efficiency score across all TSOs does not change (to one 
decimal place); 

• the impact is highly material for one TSO, where the confidence interval on 
the NormGrid weights leads to a range of efficiency estimates from 65% to 
94%. 

Figure 4.5 Impact of using regression-based NormGrid weights  

Note: Confidence intervals for the DEA efficiencies are calculated by calculating the efficiency 
score for by adding or subtracting the standard error times two from the estimated regression 
weight. 

Source: Oxera analysis.  

The analysis presented above still relies on parametric assumptions to derive 
the weight on each asset. However, Haney and Pollitt (2012)123 argued that the 
use of the cost weights for the aggregation of the physical assets contradicted 
the principle of DEA, which chooses input and output weights in such a way as 
to give the firm the highest efficiency score possible.  

Figure 4.6 shows the estimated efficiency scores in a model that includes the 
four largest components of NormGrid (lines, cables, circuit ends and 
transformers) as outputs and no other outputs. Controlling for each asset class 
separately has a relatively large impact on the estimated efficiency of some 
TSOs. In particular: 

• three previously inefficient TSOs become efficient in this model—indeed, 
one TSO increases its estimated efficiency score by 29 percentage points; 

• two TSOs that were previously identified as efficient are now classified as 
inefficient. 

                                                
123 Brophy Haney, A and Pollitt, M. G. (2013), ‘International benchmarking of electricity transmission by 
regulators: A contrast between theory and practice?’, Energy Policy, 62, November, pp. 267–81. 
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Figure 4.6 NormGrid component model 

Source: Oxera analysis. 

4.5 Adjusting for environmental factors 

4.5.1 Description of Issue 

As a TSO’s main task consists of transporting energy across a country, the 
features of that country’s environment, such as land use, climate and 
topography, can be a significant driver of their costs. Costs associated with 
environmental factors can take the form of access costs, increased 
maintenance costs and increased costs of routing lines around obstacles. 

Although TSOs should act in such a manner as to mitigate the impact of these 
environmental costs (e.g. through grid planning), these environmental 
characteristics are not controllable by management and thus need to be 
accounted for in the benchmarking process, either through the model directly 
or through post-modelling adjustments. 

4.5.2 Sumicsid’s approach to accounting for environmental factors 

Sumicsid controls for differences in operating environments by multiplying 
NormGrid with a single environmental factor based on land use. The weights 
used to construct the environmental adjustment are not discussed or presented 
in the final report or its appendices, but are presented in one of the 
workshop.124  

4.5.3 Critique and proposed solution 

We have been unable to find the source of the environmental weights used by 
Sumicsid in any of its outputs.125 Furthermore, the environmental adjustment 
cannot be justified with econometric techniques, such as a unit cost regression. 
As illustrated in Figure 4.7, TSOs with higher unit costs based on unadjusted 
NormGrid receive slightly lower environmental adjustments on average. That 
is, TSOs that operate in areas that should be more costly to operate in (based 
on land use factors) have lower unit costs than TSOs that operate in areas that 
should be less costly. 

                                                
124 Sumicsid (2019), ‘Model Specification Model Results’, April, slide 55. 
125 Indeed, Sumicsid presents a number of alternative environmental weights in its appendix, none of which 
are used in the final report. See Sumicsid (2019), ‘Norm Grid Development’, Table 2-5.  
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Figure 4.7  Relationship between Environmental adjustment and 
TOTEX per NormGrid 

 

Source: Oxera analysis. 

The lack of correlation between the environmental adjustment and unit costs 
could be driven by the way in which the environmental adjustment is derived. 
As shown in Figure 4.8, the biggest driver of most TSOs’ environmental 
adjustment is the proportion of their service area covered in forests. Factors 
that may be more operationally intuitive drivers of expenditure, such as 
urbanity, mountainous area and the proportion of surface area covered in 
infrastructure, have a relatively small impact on the overall environmental 
adjustment. 

Figure 4.8 Impact of different land use categories on NormGrid weight 

 

Source: Oxera analysis.  
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As shown in Figure 4.9, the environmental adjustment also has a negligible 
effect on estimated efficiencies. If one assumes that environmental factors are 
a key driver of expenditure, then one would expect an environmental 
adjustment to have a larger impact on the estimated efficiency scores of 
TSOs,126 especially for those TSOs that operate in either extremely simple or 
extremely complex environments. 

Figure 4.9  Impact of Sumicsid's environmental adjustment 

  

Source: Oxera analysis. 

Moreover, a satisfactory environmental factor adjustment to NormGrid should 
take the distribution of assets relative to the population served in the service 
area into account. Serving a large but relatively unpopulated area of forest 
does not introduce the same complexities as serving a densely populated area 
with significant demand for electricity. In the absence of such data, one 
approach to better capture the actual impact of environmental factors would be 
to expand the regression including the components of NormGrid suggested in 
section 4.4.3 to also include environmental factors. Alternatively, exogenous 
drivers of expenditure can be explicitly accounted for in the DEA model.  

 

                                                
126 Part of this is driven by the fact that the weight on NormGrid is small for most TSOs (see section 5.3). 
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5 TCB18 application and validation 

In this section, we critically assess Sumicsid’s application of DEA and its 
model-validation procedure. In particular, we identify the following issues. 

• Sumicsid does not present an empirical justification of its returns-to-scale 
assumption, and we find contradictory evidence in our replication (section 
5.1). 

• The outlier analysis conducted by Sumicsid does not follow scientific best 
practice and is biased towards the non-detection of outliers (section 5.2). 

• Sumicsid does not ensure that its modelling results are consistent with 
operational intuition and economic expectation (section 5.3). 

• Second-stage analysis, as conducted by Sumicsid to validate the model, is 
not supported by the academic literature and is unable to detect the 
existence of omitted cost drivers (section 5.4). 

• Sumicsid’s conclusions in terms of the TSOs’ efficiency gaps are not 
validated by alternative modelling techniques, such as SFA (section 5.6). 

5.1 Returns-to-scale assumption 

5.1.1 Description of the Issue  

‘Returns to scale’ relates to how changes in inputs (i.e. TOTEX) are linked to 
changes in outputs (e.g. NormGrid) for efficient companies.  

The choice could be a matter of policy in a national benchmarking exercise. 
For example, if a regulator wishes to encourage firms to move to a more 
productive scale size (e.g. through mergers with other firms), it could use a 
CRS assumption. This policy perspective, however, is not applicable in the 
TCB18 assessment, which is a cross-country comparison. The scale of a TSO, 
particularly those that cover their entire country, is not within management 
control.127 As such, a VRS assumption may be more appropriate. In any case, 
the returns-to-scale assumption—as with any other assumption made in the 
modelling—should be empirically validated.  

5.1.2 Sumicsid’s approach 

Sumicsid uses a non-decreasing returns to scale (NDRS) assumption. 
Sumicsid states that this is supported by the following statistical evidence. 

• A Banker F-test for returns to scale on the DEA efficiencies. In this test, 
the efficiencies estimated under CRS are compared to efficiencies under 
alternative RTS assumptions. The test statistic is similar to that used in the 
dominance test,128 and compared to an F-distribution. If the test statistic is 
statistically significant, this is taken as evidence for the alternative 
assumption. 

                                                
127 For example, in addition to TSOs that may be unable to increase their scale due to national boundaries 
(or regulatory imposed boundaries), it may not be feasible for a TSO to reduce its size if regulatory 
restrictions are in place. 
128 See Box 2.3 for more details. 
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• The sum of coefficients in a log-linear regression. If the sum of 
coefficients is less than one, adding 1% to every output increases costs by 
less than 1%, indicating increasing returns to scale.129 

However, Sumicsid does not present the results of these tests in its final 
outputs. 

5.1.3 Critique and proposed Solution 

We have performed the Banker F-test and the test on the sum of coefficients 
noted by Sumicsid, but we do not encounter the same results as Sumicsid. 

• Our application of the Banker F-test suggests that the NDRS assumption is 
overly restrictive. Instead, the test indicates that the VRS assumption is 
more appropriate. 

• The sum of coefficients in logs is larger than one, but the result is not 
significantly different from one. This indicates that a 1% increase in cost 
drivers leads to an increase in costs of more than 1%. This suggests 
decreasing returns to scale or CRS (given the statistical insignificance of the 
result).130 

• We conducted an additional parametric test by examining the coefficient of 
the intercept in a regression in levels. This test comes to the same 
conclusion as the test of the coefficients in logs, weakly supporting 
decreasing returns to scale. 

Given the sample size, the evidence is inconclusive, and results must be 
combined with operational reasoning. The statistical evidence supporting the 
NDRS assumption is not as clear as Sumicsid states. If the test statistics and 
procedures used to support the statement were part of the final report and 
detailed in a modelling code, we may have identified reasons for our diverging 
findings. As it stands, however, we cannot assess the merits of Sumicsid’s 
claims. 

Figure 5.1 below shows TSOs’ estimated efficiency scores under CRS, NDRS 
and VRS assumptions. The efficiencies of TSOs do not significantly differ 
between NDRS and CRS assumptions. However, under the VRS assumption, 
four TSOs that are assessed to be inefficient under NDRS are assessed to be 
efficient. Furthermore, two TSOs that are assessed to be efficient under NDRS 
are inefficient under VRS.  

                                                
129 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 35. 
130 These simple econometric tests cannot distinguish between VRS and DRS. This could be resolved with a 
‘translog’ model, which includes not only the cost drivers, but also their interactions and squared terms. The 
size of this model, with at least nine independent variables on a dataset of 17 TSOs, is not practical. 
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Figure 5.1 Returns to scale sensitivity 

Note: NDRS and VRS efficiency scores are only displayed when they differ from the CRS 
efficiency score. 

Source: Oxera analysis. 

The returns-to-scale assumption has a significant impact on the shape of the 
efficient frontier and the efficiency scores of TSOs. For this reason, any 
decision made must be robustly justified by both conceptual arguments and 
empirical evidence, neither of which have been presented by Sumicsid. 

5.2 Outlier analysis 

5.2.1 Description of the Issue  

The determination of achievable and robust efficiency targets is highly 
dependent on the procedure used to detect outliers and, more broadly, 
heterogeneity in the sample (i.e. the uncontrollable structural, operational, 
environmental characteristics) that is not accounted for in the model 
specification. 

The DEA model, as applied by Sumicsid, determines the frontier based on 
those TSOs deemed to be efficient without making any allowance for errors. 
For the TSOs to be sufficiently comparable to conduct robust DEA, data should 
be measured without errors, all relevant exogenous differences should be 
considered as cost drivers, and any excluded heterogeneity in the model 
specification should be addressed through an effective outlier procedure. Thus 
the estimation of an efficient frontier is greatly influenced by the existence of 
outliers, especially in deterministic methods of benchmarking such as DEA.  

In the context of this study, where the TSOs being assessed operate in very 
different operating environments and data errors are particularly prevalent (see 
section 3.1), outliers are likely to be present in the sample. 

5.2.2 Sumicsid’s approach 

Sumicsid follows the same outlier procedure as the Bundesnetzagentur. As 
such, the approach was developed to fall in line with the legal requirements of 
the ARegV. In addition to the formal outlier tests outlined in the ARegV, 
Sumicsid removes one TSO from the sample ex ante as it states this TSO is 
‘almost always [...] an extreme outlier’ in the various model specifications it 
tested.  
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Other outlier tests are discussed in the main report,131 but it is not clear if or 
how these have been used in the final analysis. 

5.2.3 Critique and proposed solution 

As with other parts of its analysis, Sumicsid does not provide any rationale for 
focus on the outlier procedure specified in the ARegV. The purpose of the 
ARegV is to enable national comparisons among German regulated entities. It 
is neither legally binding nor sufficient in an international benchmarking 
context.  

Setting aside the insufficiency of the ARegV in TCB18, the 
Bundesnetzagentur’s outlier procedure has been challenged in the past as it is 
inconsistent with the academic literature and fails to identify all outliers. 
Furthermore, Sumicsid mentions alternative approaches to outlier detection in 
the main report (such as an examination of DEA weights and the econometric 
method)132 but does not explain how or if these methods were used at any 
stage in the TCB18 study.  

Specific issues relating to the dominance test and super-efficiency are outlined 
below. 

Dominance test 

In an expert opinion on Sumicsid’s dominance test in the benchmarking of 
German TSOs using DEA, Kumbhakar, Parthasarathy and Thanassoulis 
(2018)133 concluded that the dominance test is neither legally consistent with 
the ARegV nor based on any theoretical foundation. The legal consistency is 
less of an issue in the TCB18 study as there are no binding legal requirements 
for this international benchmarking exercise. More importantly, however, the 
dominance test is not supported in the academic literature and suffers from a 
number of flaws. 

• Although not relevant to TCB18, Sumicsid’s dominance test in itself 
addresses only the second requirement of the ARegV (i.e. that the impact of 
removing the potential outlier must be statistically significant), as the test 
statistic is indifferent to the number of units affected by an outlier (required 
by the first requirement). 

• The dominance test requires the TSO efficiencies to follow a half-normal 
distribution, which is inconsistent with the non-parametric nature of the DEA 
method. 

• Banker (1993) notes that his tests are asymptotically valid under the 
maintained assumptions, which means that they are appropriate only for 
large samples.134 

• Efficiencies of the same units are being compared in the numerator and 
denominator of the test statistic. This invalidates the Banker tests (1993, 
1996), which require independent samples of efficiencies to be compared. 

                                                
131 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 30. 
132 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 30. 
133 Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2018), ‘Validity of Bundesnetzagentur’s 
dominance test for outlier analysis under Data Envelopment Analysis’, August. 
134 Banker, R. D. (1993), ‘Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical 
Foundation’, Management Science 39:10, pp. 1265–73; (1996), ‘Hypothesis tests using data envelopment 
analysis’, The Journal of Productivity Analysis, 7, pp. 139–59. 
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In summary, the dominance test has no theoretical basis and cannot be used 
to identify dominant units, regardless of the sample size.  

In response to Kumbhakar, Parthasarathy and Thanassoulis (2018), Sumicsid 
(2019) has, without exception, agreed with the four limitations highlighted in 
our expert report and summarised above. Sumicsid (2019)135 specifically notes 
that: 

In summary, we consider the four objections towards the F-distribution raised by 
the Oxera note as valid.136  

Nevertheless, Sumicsid (2019) argues that the test ‘makes the most use of 
available information’ and that it ‘is a cautious test’. 

In response to Sumicsid (2019), Kumbhakar, Parthasarathy and Thanassoulis 
(2019)137 showed not only that the test lacks a theoretical foundation, but also 
that it is biased towards non-rejection (i.e. non-identification of potential 
outliers). The claim made in Sumicsid (2019) that its test is cautious does not 
stand up to scrutiny which we also evidenced empirically in Kumbhakar, 
Parthasarathy and Thanassoulis (2019). 

There are better alternatives for the dominance test, but they require further 
theoretical development. The most promising candidate is the bootstrap test 
proposed in Kumbhakar, Parthasarathy and Thanassoulis (2018). The 
bootstrap-based test is a non-parametric test consistent with the non-
parametric nature of DEA, requires fewer assumptions than other non-
parametric options explored in Kumbhakar, Parthasarathy and Thanassoulis 
(2018), and explicitly takes into account the pairing structure of efficiencies 
both with and without a potential outlier.138  

Figure 5.2 shows the estimated efficiency scores when Sumicsid’s dominance 
test is replaced with our recommended bootstrap-based test. The test identifies 
two additional dominant outliers139 and increases the number of efficient TSOs 
by two. 

                                                
135 Sumicsid (2019), ‘Outliers in DEA based regulatory benchmarking response to the Oxera report’, October. 
136 Sumicsid (2019), ‘Outliers in DEA based regulatory benchmarking response to the Oxera report’, October, 
p. 16. 
137 Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2019), ‘Rejoinder to Sumicsid’s response to the 
Oxera report on Bundesnetzagentur’s dominance test in DEA’, May. 
138 Kumbhakar, S., Parthasarathy, S. and Thanassoulis, E. (2018), ‘Validity of Bundesnetzagentur’s 
dominance test for outlier analysis under Data Envelopment Analysis’, August.  
139 In our replication of Sumicsid’s analysis, we did not identify any dominant outliers.  
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Figure 5.2 Impact of using a bootstrapped dominance test 

 

Source: Oxera analysis.  

Super-efficiency test 

Although the super-efficiency test as applied by Sumicsid has a theoretical 
foundation, it is insufficient to detect all abnormally super-efficient units. 

• Outliers are unlikely to be identified in volatile samples. The critical 
efficiency value, above which a TSO is identified as an outlier, is directly 
proportional to the inter-quartile range (IQR) of the estimated efficiency 
scores. Therefore, if the results from a DEA model are highly volatile, this 
could increase the IQR on average, which would imply that the critical 
efficiency value would be higher for a unit to be identified as an outlier. Such 
a high-volatility sample could be a result of unidentified heterogeneity or an 
imperfect model. 

• Sumicsid’s analysis is vulnerable to masked outliers. For example, 
there could be two network operators that are similar in characteristics and 
far removed from the rest of the sample, but one is masked (covered or 
hidden) by another. This is referred to as a ‘masked’ outlier. In such a case, 
a mechanistic application of the super-efficiency test could fail to identify 
either one as an outlier. Note that the same issue can also occur with 
respect to the dominance test.  

Only a sequential application of the super-efficiency outlier tests that allow for 
the possibility of masking could reveal two or more ‘joint’ outliers. Deuchert and 
Parthasarathy (2019)140 and Thanassoulis (1999)141 suggest that a sequential 
exploration of outliers should be pursued. After each step, conspicuous 
companies based on the absolute super-efficiency threshold are excluded and 
the remaining companies are investigated for additional abnormalities.  

A sequential application of super-efficiency outlier tests would result in the 
identification of more outliers, resulting in a more homogeneous sample for 
efficiency estimation.  

                                                
140 Deuchert, E. and Parthasarathy, S. (2018–19), five-part series of articles on the German energy 
regulator’s benchmarking framework covering efficiency methods (DEA and SFA), functional form 
assumptions, cost driver analysis, outlier analysis and model validation, ew–Magazin für die 
Energiewirtschaft. 
141 Thanassoulis, E, (1999) ‘Setting Achievement Targets for School Children’, Education Economics, 7:2, 
pp. 101–19.  
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Figure 5.3 shows the distribution of estimated efficiency scores when the 
super-efficiency test is applied iteratively (here we have not adjusted for the 
super-efficiency threshold issue highlighted above). In this case, three more 
outliers are identified and the three more TSOs are estimated to be fully 
efficient. 

Figure 5.3 Impact of using an iterative super-efficiency test 

 

Source: Oxera analysis.  

It is important to note that all outlier procedures rely on assumptions and is 
contingent on the model specification. Furthermore, most tests require 
somewhat arbitrary thresholds to determine whether a particular observation is 
an outlier. For this reason, it is essential that the data collection and 
construction process is robust to identify obvious data errors. Furthermore, the 
final model used to estimate efficiency scores must appropriately capture 
differences in operation characteristics across TSOs. In other words, even a 
robust and academically valid outlier procedure is not a replacement for proper 
data processing and model development. 

5.3 Model validation—DEA weights 

5.3.1 Description of the issue 

In an econometric setting, it is relatively straightforward to assess whether a 
particular cost driver has an operationally intuitive impact on efficient 
expenditure—the sign, magnitude and statistical significance of the estimated 
coefficients can determine whether the estimated relationship between cost 
and cost drivers in a benchmarking model is appropriate. Similar validation is 
required in DEA, where the assessment is of the weights on the input and 
output factors, and the peers and their weights for the inefficient TSOs. This is 
an important step to show that the method (i.e. DEA) is appropriate for the 
dataset (as would be expected of any other method).  

DEA weights can be used to assess whether a model is operationally intuitive. 
If it is believed ex ante that some outputs are stronger drivers of cost than 
others, an examination of the DEA weights could support or contradict this and 
lead to further model development. Indeed, in past iterations of the TCB18 
study, Sumicsid imposed restrictions on the weights to ensure that the relative 
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importance of particular cost drivers remain operationally intuitive for all 
TSOs.142 

Alongside aiding model development, the weights can be used to identify 
unusual TSOs. If a TSO’s efficiency score is driven largely by one less relevant 
cost driver, or if the weights imply an unintuitive relationship between the cost 
drivers, then the TSO may be an outlier.  

5.3.2 Sumicsid’s approach 

Sumicsid discusses the use of DEA weights in its main report. For example, it 
states that the ‘marginal substitution ratios can reveal whether an observation 
is likely to contain errors’,143 where the marginal substitution ratios are 
calculated as the ratios of the DEA weights. Furthermore, Sumicsid briefly 
mentions the use of weight restrictions and how they are not necessary in the 
current context.144 

However, the DEA weights are not discussed anywhere in the final outputs 
(including the TSO-specific outputs), so it is unclear exactly how the weights 
(or in fact, any of the DEA outputs) have been used in the model-development 
and validation processes.  

5.3.3 Critique and proposed solution 

The apparent lack of validation through examination of DEA results is 
concerning. In particular, some of Sumicsid’s statements that are 
unsubstantiated in the main report could be confirmed or contradicted by an 
examination of DEA weights. For example, Sumicsid’s statement that adjusted 
NormGrid is the primary cost driver, followed by weighted lines,145 could be 
empirically supported by an examination of the DEA weights.  

Figure 5.4 shows the importance of each cost driver in determining the 
efficiency of the TSOs. Interestingly, four TSOs’ efficiency scores are not 
determined by NormGrid at all, and a further eight TSOs do not have NormGrid 
as the main driver of their estimated efficiency scores. This is counterevidence 
to Sumicsid’s statement that NormGrid is the strongest cost driver.146  

                                                
142 For example, see Frontier Economics, Sumicsid and Consentec (2013), ‘E3GRID2012 – European TSO 
Benchmarking Study, A report for European Regulators’, July. 
143 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 30. 
144 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 46. 
145 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, pp. 32–34. 
146 It is well known that multiple optimal solutions (i.e. more than one set of DEA weights) exist for the 
efficient units (i.e. peers). However, Sumicsid has not demonstrated that NormGrid is always the main 
efficiency driver by exploring alternative optimal DEA weights sets for firms where the initial finding is 
otherwise. 
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Figure 5.4  Weights of outputs in Sumicsid’s DEA 

 

Note: This figure does not include the weights for outliers which were removed from the final 
sample. The weights for fully efficient units are not unique. 

Source: Oxera analysis. 

Without an evaluation of DEA weights, many statements made in the report—
including the one about the importance of NormGrid’s—are unverifiable. From 
the results presented in Sumicsid’s report, we do not know if NormGrid is 
actually instrumental in determining efficiency. In fact, an examination of DEA 
weights reveals that NormGrid is not the primary driver of efficiency for most 
TSOs. Additionally, removing NormGrid does not have the largest effect on 
overall efficiency. 

Furthermore, other outputs from DEA modelling, such as peer analysis, appear 
to have been ignored in Sumicsid’s final reports. In DEA, each inefficient TSO 
will have a corresponding set of efficient peers. It is therefore possible to 
perform a precise one-to-one assessment of the homogeneity of the units. This 
assessment could cover several factors, such as the regulatory environment, 
ownership structure and quality of service.  

An alternative to the assessment of homogeneity is to examine the weights on 
peers (known as ‘scaling factors’ or ‘lambdas’). The scaling factors indicate 
how much an efficient TSO has to be scaled up or down to assess the 
inefficient TSO to which it is a peer. The scaling factors for the inefficient TSOs 
are summarised in Table 5.1 below. 

Table 5.1 Sum of scaling factors for inefficient TSOs 
 

Average Minimum Maximum 

Scaling factor 4.10 1.00 12.15 

Source: Oxera analysis. 

The average scaling factor is 4.1, indicating that the average inefficient TSO is 
compared to TSOs approximately four times smaller than itself. Indeed, the 
highest scaling factor is 12.15. For this TSO, the TSOs to which it is being 
compared are so different in scale and complexity that many of the solutions 
implemented by the peer may not be feasible. In any case, the outputs from 
DEA should be validated to be useful for learning or any other purpose. 

One efficient TSO is a peer to six of the nine inefficient TSOs. For one 
inefficient TSO, this peer is scaled up by a factor of 9.8. For another inefficient 
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TSO, the peer is scaled up by a factor of 5. These scaling factors are unusual 
and should have been validated. 

5.4 Model validation—identification of omitted cost drivers 

5.4.1 Description of the issue 

If relevant cost drivers are omitted from the model specification, the resulting 
efficiency scores will be biased for particular TSOs. The relevance of potential 
cost drivers is commonly assessed with the cost driver analysis in the model-
development phase of a benchmarking study and validated further through 
extensive sensitivity analysis.  

5.4.2 Sumicsid’s approach 

Sumicsid uses second-stage regressions to test for the exclusion of relevant 
cost drivers. It is not clear from the individual report whether the regression is 
estimated using OLS, ROLS or some other estimator, but Sumicsid states in 
the main report that: 

second-stage analyses are typically done using graphical inspection, non-
parametric Kruskal-Wallis tests for ordinal differences and truncated Tobit 
regressions for cardinal variables.147 

Sumicsid further states that such second-stage analysis of this sort is ‘routinely 
done’ to identify omitted cost drivers.148 This analysis is presented in the 
individual report.  

5.4.3 Critique and proposed solution 

The second-stage analysis forms the core of Sumicsid’s model validation in the 
individual reports.149 However we are not aware of any literature that 
specifically focuses on using DEA, followed by regression, to justify a set of 
input–output variables.150 Second-stage regressions are sometimes used to 
adjust efficiencies from a first stage DEA model;151 however, this serves a 
different purpose to that stated by Sumicsid. Furthermore, the second-stage 
analysis used in the literature is valid if the following conditions hold. 

• The location of the efficient frontier based on the first-stage analysis is not 
affected by the variables used in the second-stage analysis.152 

• The first- and second-stage variables should be independent of each other, 
although they can be correlated within first- or second-stage variables. 

                                                
147 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report‘, July, paragraph 4.09. 
148 Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, p. 35. 
149 For example, see Sumicsid (2019), ‘Project TCB18 Individual Benchmarking Report Fingrid – 131’, July, 
chapter 5. 
150 The Bundesnetzagentur has used such analysis in the past to identify omitted cost drivers. but such use 
is not supported by academic literature and was strongly challenged by the industry. 
151 For example, see the Norwegian Water Resources and Energy Directorate, ‘Guidelines for revenue cap 
calculation in R’, section 4.2.  
152 See Simar, L. and Wilson, P.W. (2007), ‘Estimation and inference in two-stage, semi-parametric models 
of production processes’, Journal of Econometrics, 136:1, pp. 31–64; (2011), ‘Two-stage DEA: caveat 
emptor’, Journal of Productivity Analysis, 36:205. Banker and Natarajan (2008) adopt a different variant of 
separability, as noted below. See Banker, R.D. and Natarajan, R. (2008), ‘Evaluating contextual variables 
affecting productivity using data envelopment analysis’, Operations Research, 56:1, pp. 48–58. 
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• Estimates of efficiency from the first stage should first be adjusted for the 
serial correlation bias, because the dataset in the first stage is finite. The 
bias correction can be estimated using a bootstrapping procedure.153 

As the first-stage DEA model does not offer information on statistical 
significance of the outputs and its second-stage analysis for further model 
validation is erroneous, there is a need to provide additional robustness checks 
to see what happens to the DEA efficiency scores if some of the omitted 
variables are used alongside others in the first stage. This could potentially 
identify TSOs that are particularly susceptible to certain cost drivers, even if 
those cost drivers are not significant at the industry level.  

We use an empirical example to illustrate the invalidity of Sumicsid’s approach. 
We first estimated the efficiencies of TSOs with two of Sumicsid’s cost drivers, 
excluding one. We then tested whether the omitted cost driver would be 
identified as such using Sumicsid’s second-stage analysis. Sumicsid makes a 
number of claims with respect to its final model, including the importance of 
each cost driver in explaining costs.154 One would therefore expect all cost 
drivers to be statistically significant at the second stage—especially adjusted 
NormGrid, given that Sumicsid states that this is the main cost driver. 

Table 5.2 below shows that for two out of three cost drivers, the omitted cost 
driver was statistically insignificant and would not be identified as an omitted 
variable in Sumicsid’s second-stage analysis. For example, if Sumicsid had 
started with a two-output model controlling for weighted lines and transformer 
power, it would not have identified NormGrid as an omitted output and would 
have concluded that the two-output model is validated. Furthermore, the ‘next 
strongest’ cost driver, weighted lines, would also not have been identified as an 
omitted driver. Indeed, the only driver that would be identified is transformer 
power. 

Table 5.2 Results of the second-stage validation 

Omitted cost 
driver 

Coefficient on 
omitted cost 

driver1 

P-value2 Relevant (omitted) 
variable?3 

Adj. NormGrid -1.1E-10 0.48 No 

Transformer Power -2E-06 0.01 Yes 

Weighted Lines -2.6E-05 0.19 No 

Environment 0.06014 0.88 No 

Note: 1 Coefficient of omitted cost driver in a regression on efficiency scores determined with a 
two-output model omitting this driver. 2 Probability of the coefficient occurring, given that the ‘real’ 
coefficient is zero. 3 Significantly different coefficient from zero at the 5% level.  

Source: Oxera analysis.  

Note that we do not present these results as arguments for excluding 
NormGrid and weighted lines from the model. Rather, these results illustrate 
that the second-stage validation used by Sumicsid is not able to identify 
relevant omitted cost drivers. It cannot be argued, therefore, on the basis of 
this procedure, that no relevant cost drivers were omitted, nor that the first-
stage cost model is validated. 

                                                
153 See Simar, L. and Wilson, P.W. (2007), ‘Estimation and inference in two-stage, semi-parametric models 
of production processes’, Journal of Econometrics, 136:1, pp. 31–64; (2011), ‘Two-stage DEA: caveat 
emptor’, Journal of Productivity Analysis, 36:205. 
154 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, pp. 32–34. 
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5.5 Model validation—SFA 

5.5.1 Description of the issue 

DEA is one method of assessing the efficiency of TSOs. Although it has certain 
advantages over other methods (for example, it does not impose strict 
assumptions on the relationship between inputs and outputs), it suffers from 
being a deterministic method of efficiency assessment (as considered by 
Sumicsid) and the results are contingent on assumptions imposed on the 
model (e.g. returns to scale) which have not been sufficiently motivated by 
Sumicsid. In this respect, it treats the data ‘as given’ and makes no allowance 
for uncertainty in the variables.  

It is therefore common for regulators to use alternative benchmarking methods, 
either to directly inform the efficiency target or as a cross-check to the results 
from DEA. For example, the Bundesnetzagentur uses four models to estimate 
a DSO’s relative efficiency, two of which are estimated via DEA and two of 
which are estimated via SFA. A DSO’s efficiency score is the best of the four, 
with a lower bound of 60%.  

SFA is particularly relevant when we suspect a lot of uncertainty in the data. As 
highlighted in section 2, there is significant uncertainty in the data used by 
Sumicsid (this includes issues with its data processing and data adjustments), 
and it is therefore important that the results from DEA are supported by SFA 
models. 

5.5.2 Sumicsid’s approach  

Sumicsid has not used SFA or any other benchmarking method to validate its 
model, nor has it used SFA to assess the robustness of the TSOs’ efficiency 
scores.  

Sumicsid states: 

In a study of European electricity TSOs, the number of observations is too small 
for a full-scale application of SFA as main instrument. We have therefore used 
DEA as our base estimation approach, in line with regulatory best practice and 
earlier studies such as E2GAS and E3GRID.155 

Furthermore, Sumicsid has stated at previous workshops that there are 
convergence issues156 when attempting to estimate the SFA models on the 
current dataset. 

5.5.3 Critique and proposed solution 

All models are imperfect representations of reality, and any one model could 
overestimate or underestimate an individual TSO’s efficiency. As such, it is 
important to consider valid alternatives, both in terms of cost driver selection 
and estimation technique. 

While most empirical investigations (including both DEA and SFA) perform 
better on larger samples, there is no fixed rule as to how many observations a 
model needs. Indeed, SFA and other econometric methods have been used on 
smaller sample sizes than that available to Sumicsid.157 As such, sample size 

                                                
155 Sumicsid (2019), ‘Pan-European cost-efficiency benchmark for electricity transmission system operators 
main report’, July, p. 29. 
156 If a model fails to converge, it means that the iterative procedure used to estimate the models results in 
an endless loop. In this sense, the model cannot be estimated. 
157 For example, the ORR used estimated SFA models with 14 infrastructure managers (although the time 
series component was longer). The ORR also performed SFA on a sample of 50 observations for its 
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in and of itself is not a valid justification for ignoring SFA, and the 
appropriateness of a method has to be determined empirically on the data and 
model used.  

As a general related observation, we note that despite deriving its model on a 
panel dataset (i.e. data over time across TSOs), Sumicsid has not effectively 
used all the information it has at its disposal. Instead, it has focused on a single 
year’s data without justification. Also, Sumicsid should have validated the 
outputs from DEA (e.g. peers and weights) to show that the method was 
appropriate for the dataset, but it has not.  

The non-consideration of SFA is also in conflict with the lack of consideration 
given to sample size in Sumicsid’s current approach—for example, with 
respect to its second stage analysis and the dominance test, which also rely on 
large samples (among other conditions) to be appropriate. Sumicsid made no 
attempt to justify the size of its sample for this analysis and has not validated 
the DEA output to show that it is valid for the dataset, yet it has relied on 
sample size alone to justify ignoring SFA models from the evidence base.  

The lack of convergence that Sumicsid has discussed (even though no 
evidence in the form of, say, modelling code was made available) may cast 
doubt on the appropriateness of the model specification that it has selected. 
Lack of convergence typically has three interpretations: 

• the model is mis-specified, which could mean that key drivers have been 
omitted and/or the functional form is incorrect; 

• there is too much statistical noise in the data for the residual to be 
decomposed into noise and inefficiency;  

• there is no inefficiency in the sample. 

Overall, the non-convergence of SFA models should not be used as an 
argument against using SFA. When SFA models are estimated on our dataset, 
we do not encounter convergence issues. For example, Table 5.3 shows the 
SFA models when estimated on a cross section (i.e. year by year).  

It is possible to test for the absence of inefficiency using a likelihood ratio (LR) 
test. If inefficiency is not present in the sample, the SFA model reduces to a 
standard OLS model with normally (symmetrically) distributed errors. As can 
be seen in Table 5.3, the estimated efficiency scores are statistically 
insignificant in all years, suggesting that much of the estimated efficiency gap 
is due to statistical noise rather than inefficiency.  

                                                
determination of the efficiency on Network Rail as part of the PR18 price control. See The Office of Rail and 
Road (2013), ‘PR13 Efficiency Benchmarkings of Network Rail using LICB’, August, p. 6; (2018), ‘PR18 
Econometric top-down benchmarking of Network Rail A report’, July, p. 43. 
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Table 5.3 Cross-sectional SFA 

  2013 data 2014 data 2015 data 2016 data 2017 data 

NormGrid 0.631*** 0.609** 0.591** 0.507** 0.472** 

Transformer Power 0.465** 0.548** 0.516** 0.560*** 0.559*** 

Weighted Lines 0.0478 0.0272 0.002 0.0011 0.0115 

Constant 1.398 1.073 2.061 3.556 4.169 

Number of 
observations 

16 16 16 16 17 

Does the LR test 
detect statistically 
significant1 
inefficiency? 

No No No No No 

Note: All models presented in this table assume that inefficiency follows a half-normal 
distribution and are estimated in logarithms. The models do not materially change if alternative 
distributional assumptions are made (such as exponential or truncated normal) but the models 
are more difficult to estimate and sometimes do not converge. 1 Statistical significance is 
determined at the 5% significance level. 

Source: Oxera analysis.  

The results in Table 5.3 should be interpreted with caution due to the size of 
the sample on which the model is estimated. Samples of 16 or 17 observations 
are generally considered small to allow for robust statistical inference, but 
regulatory benchmarking applications exist on similarly sized datasets. 

The models converge, but the estimated inefficiency is statistically insignificant 
in all of the models presented in the table. 

Table 5.4 shows similar results estimated on the full sample (i.e. all 81 
observations included in one model). Specifically, we present results for: 

• pooled SFA models, where each observation is assumed to be 
independent;  

• time-invariant SFA, where a TSO’s inefficiency is assumed to be constant in 
the analysis period; 

• time-varying SFA, where parameters describing the distribution of 
inefficiency are allowed to vary through time, according to a linear trend. 

The models converge, but the estimated inefficiency is statistically insignificant 
in all of the models presented in the table. 

Table 5.4 Panel SFA 

SFA estimator Does the LR test detect 
statistically significant1 
inefficiency? 

Intuitive interpretation 
of coefficients?2 

Pooled SFA No Yes 

Time-invariant SFA No Yes 

Time-varying SFA No Yes 

Note: All models presented in this table assume that inefficiency follows a half-normal 
distribution and are estimated in logarithms. A linear trend is added to the cost driver 
specification to account for changes in expenditure through time. 1 Statistical significance is 
determined at the 5% significance level. 2 In this context, ‘intuitive interpretation’ means that the 
estimated coefficient on each output variable is positive. 

Source: Oxera analysis. 
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The SFA model not finding statistically significant inefficiency is not a reason to 
use DEA; rather, it suggests caution is warranted against interpreting any 
estimated inefficiency in the DEA as actual inefficiency rather than statistical 
noise, and/or that the models specification should be reconsidered. 

5.6 Frontier shift 

5.6.1 Description of the issue 

Frontier shift relates to the ability of the most efficient operators in an industry 
to improve productivity. In a DEA context, frontier shift can be estimated by 
assessing the evolution of the efficient frontier over time. Alternatively, in an 
SFA context, frontier shift can be estimated by including time variables (e.g. a 
time trend or time dummies) in the model specification. The assessment of 
frontier shift is a critical aspect of regulatory benchmarking, as the frontier shift 
productivity improvements (or deteriorations) can be achieved by all 
companies in an industry. 

5.6.2 Sumicsid’s approach 

Sumicsid does not discuss frontier shift in its main report or associated 
appendices. We understand that frontier shift was discussed at one workshop, 
but the results are not presented in the slides.158, 159 

5.6.3 Critique and proposed solutions 

Because Sumicsid does not discuss frontier shift analysis, we unable to assess 
the validity of the methods it used or the robustness of the final outputs. 
However, we have estimated frontier shift using the same input and output 
variables that Sumicsid has used in its analysis of relative efficiencies. 
Consistent with scientific best practice, we use a CRS assumption when 
estimating frontier shift.160 The frontier shift results are shown in Figure 5.5.  

The analysis indicates that the frontier has been regressing at a rate of 4% p.a. 
on average. This suggests, all else equal, that efficient costs are increasing in 
the analysis period. Such a large and negative frontier shift result differs greatly 
to what is often applied in regulatory contexts161 and could be indicative of 
model mis-specification rather than genuine deteriorations in productivity. In 
particular, as Sumicsid’s cost drivers do not explain changes in expenditure 
well over time, relevant cost drivers that explain changes in costs over time 
(such as asset health) may be missing, and the position of a TSO in the 
investment cycle (as they have not been sufficiently normalised) may also 
impact the estimated results. 

The inability of the DEA model to account for changes in efficient expenditure 
over time also raises additional concerns regarding the ability of the model to 

                                                
158 See Sumicsid (2019), ‘Model Specification Model Results’, April, slide 81. 
159 Sumicsid published the results of the dynamic efficiency analysis after the finalisation of this report. See 
Sumicsid (2020), ‘Dynamic efficiency and productivity changes for electricity transmission system operators’, 
April. 
160 See, for example, Thanassoulis, E. (2001), Introduction to the Theory and Application of Data 
Envelopment Analysis: A foundation text with integrated software, Kluwer Academic Publishers, pp. 177–
178, and Färe, R., Grosskopf, S. and Margaritis, D. (2008), ‘Efficiency and productivity: Malmquist and more’, 
The measurement of productive efficiency and productivity growth, 5, pp. 522–622. 
161 For example, Ofwat has applied a 1.1% p.a. frontier shift challenge to water companies in the PR19 final 
determination. See Ofwat (2019), ‘PR19 final determinations Securing cost efficiency technical appendix’, 
December, p. 168. The Bundesnetzagentur applied a frontier shift target (known as Xgen) of 0.9% p.a. in 
electricity distribution. See Bundesnetzagentur (2018), ‘BK4-18-056 Beschlusskammer 4’, November. Ofgem 
applied a -0.3% ongoing efficiency target (frontier shift net of input price pressure) to gas distribution 
networks and a -0.7–0.1% p.a. ongoing efficiency target to transmission and system operators. See Ofgem 
(2012), ‘RIIO-T1/GD1: Real price effects and ongoing efficiency appendix’, December, Table 3.1.  

https://www.bundesnetzagentur.de/DE/Service-Funktionen/Beschlusskammern/1_GZ/BK4-GZ/2018/BK4-18-0056/BK4-18-0056_Beschluss_download.pdf?__blob=publicationFile&v=3
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account for differences in efficient expenditure across TSOs. For example, if 
the model is unable to capture the general trend of increasing regulatory 
burden over time, then it is unlikely that the model can capture differences in 
regulatory burden between TSOs. In this case, a TSO’s estimated efficiency 
score will be driven by differences in regulatory burden as well as (or rather 
than) genuine differences in efficiency.  

Similar arguments could be made in relation to other factors that are not 
captured by the model, such as changes in input prices, weather conditions, 
asset health, economic environment, objections to new assets from local 
residents, and quality of service.  

Figure 5.5 Frontier shift—DEA Malmquist 

 

Note: A positive number indicates an improvement in productivity. 

Source: Oxera analysis.  

The analysis of DEA models is supported by results from SFA. Table 5.5 
shows the SFA models that we have used to determine the rate of frontier shift 
in the sample. The estimated coefficient on the time trend suggests that 
efficient costs are increasing at a rate of 2.3–4.7% p.a., which is consistent 
with the 4% p.a. increase in efficient costs estimated by the DEA model. 
However, the estimated frontier shift is statistically insignificant in some 
specifications, indicating that the data is also consistent with there being no 
frontier shift at all. This is further evidence that the dataset is ‘noisy’ and 
Sumicsid’s focus on deterministic approaches that do not allow for statistical 
inference is misleading. 
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Table 5.5 Frontier shift—SFA 

  
Pooled SFA 

Panel SFA (time-
invariant) 

Panel SFA (time-
varying) 

NormGrid 0.551*** 0.929*** 0.891*** 

Transformer Power 0.520*** 0.147 0.12 

Weighted lines 0.0146 0.065 0.115 

Time trend 0.0464 0.0284*** 0.0229 

Constant 2.688* -1.593 -0.933 

Implied frontier 
shift (% p.a. ) 

-4.7% -2.9% -2.3% 

Note: All models presented in this table assume that inefficiency follows a half-normal 
distribution and are estimated in logarithms. 

Source: Oxera analysis. 

The inability of the models to capture changes in expenditure over time should 
have been identified in the cost driver analysis phase of the benchmarking 
study (for example, through statistical tests to determine whether the 
relationship between costs and cost drivers stays constant through time).  

The relative efficiency scores and frontier shift estimates in the TCB18 study 
are fundamentally related. It cannot be that one piece of evidence from TCB18 
is deemed more robust than another, given that both parameters are 
determined by the same data, model and methodology. Therefore, if the 
relative efficiency scores are to be used by NRAs to set cost allowances for 
TSOs, then the frontier shift results must also be considered and used in 
validating the outputs from the study. Sumicsid’s omission of frontier shift 
analysis from its final outputs is particularly concerning, as it does not allow 
NRAs to use complete information when setting cost allowances for TSOs. 
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6 Conclusion 

International benchmarking can be a powerful tool for companies and 
regulators to assess the efficiency of TSOs. This is especially true in the 
context of the electricity transmission industry, where the sector is often 
characterised by national monopolies, thus making national benchmarking 
challenging. In this sense, we welcome projects such as the TCB18 study and 
its predecessors, which have attempted to develop a framework for the regular 
assessment of TSOs. 

Nevertheless, the TCB18 study itself suffers from a number of weaknesses 
that mean the estimated efficiency scores cannot be interpreted as ‘true’ 
differences in efficiency in their current form. Some of these weaknesses, such 
as consistency in reporting guidelines, are partly driven by the lack of maturity 
in the international benchmarking process. We expect that some of these 
issues could be resolved with time and in future iterations of the study, as 
TSOs and NRAs become more familiar with the process. However, Sumicsid’s 
concluding remarks in its main report are concerning, as they are not 
consistent with the significant issues and areas for future work identified 
through our review. For example: 

Regulatory benchmarking has reached a certain maturity through this process 
and model development, signaling both procedural and numerical robustness. 
Drawing on the work, the definitions and data standards as well as the model, 
CEER can readily plan for a repeated regular benchmarking at a considerably 
lower cost in time and resources, to the benefit of all involved. Although the 
current model brings improvements in particular in environmental factors, the 
inflation and salary corrections and the NormGrid definitions, the relative 
symmetry with the earlier model from E3GRID can be seen as a confirmation of 
the type of parameters and approaches chosen, leading to stable and 
predictable results. In this manner, the future work can be directed towards 
further refinement of the activity scope and the interpretation of the 
results, rather than on the model development.  

[emphasis added] 

We have identified several areas of the benchmarking project that require 
significant future work.  

• Data collection and construction. The dataset on which the cost model 
was derived contains multiple data errors and inconsistencies that reduce 
the robustness of any analysis. Furthermore, the adjustments for price-level 
differences and operating environment that Sumicsid has made to the data 
are insufficient to capture the heterogeneity across TSOs. 

• Model development. Sumicsid’s sole reliance on asset data as cost drivers 
rather than outputs, its limited statistical analysis and non-validation of 
outputs and modelling assumptions, and the sensitivity of its final model to 
small changes in the modelling assumptions indicate that Sumicsid’s final 
model is not validated.  

• Application and validation. The assumptions that fed into Sumicsid’s 
application of DEA are not well-justified. Its outlier procedure is not 
consistent with academic practice and not justified for the current context. 
Furthermore, Sumicsid’s approach to validating its model through second 
stage analysis is neither theoretically valid nor sufficient, 

• Transparency. Sumicsid’s level of transparency falls significantly short of 
what would be considered good practice. 
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Clearly, these issues cannot be corrected through simple refinements to the 
current model. We provide a number of recommendations in this report to 
improve the analysis for future iterations of the study, including the following. 

• Provide a clear conceptual (and, where possible, empirical) justification for 
any assumptions that feed into each stage of the benchmarking process. 

• Relatedly, provide detailed description in the outputs and publish modelling 
codes (which can be anonymised) to aid in transparency. 

• Establish an iterative data-collection procedure that ensures data is reported 
correctly and consistently across TSOs and validate these. 

• Use statistical analysis, such as Monte Carlo simulations, to evaluate the 
impact of any potential data errors. This could then be used to adjust the 
estimated efficiency scores for setting cost allowances. Alternative 
evidence, such as SFA modelling, could also inform the extent of the 
adjustment. 

• Robustly capture the impact of all input price differences on expenditure to 
avoid conflating efficiency and this exogenous factor. 

• Perform a scientifically valid model-development process that: (i) is based 
on realistic modelling assumptions; (ii) tests the significance of alternative 
model specification; (iii) tests the sensitivity of the analysis to small changes 
in the sample: and (iv) avoids the arbitrary restriction of cost drivers to 
asset-based outputs. 

• Relatedly, the analysis should not be too sensitive to the year in which 
efficiency is assessed. If the estimated efficiency of TSOs fluctuates 
significantly from year to year, the causes of this must be explored. 

• If asset-based outputs are used, these must be validated through 
comparisons to pure outputs. 

• Provide statistical evidence to support its modelling assumptions. In 
particular, its returns-to-scale assumptions must be justified. 

• Develop a robust outlier-detection procedure based on academic and 
scientific best practice. This need not include exact tests recommended in 
this study (i.e. the bootstrap based dominance test and the iterative super-
efficiency test); however, any assumptions that feed into the outlier tests 
should be clearly explained and supported. 

• Analyse the outputs of a DEA model, such as cost driver weights, peers and 
lambdas, to ensure they are consistent with operational intuition. 

• Avoid relying on second-stage validation to detect omitted cost drivers. In a 
DEA context, the impact of omitted cost drivers should be assessed by 
testing the sensitivity of the results to the inclusion of alternative cost 
drivers. 

• Cross-check the analysis with alternative benchmarking methods, such as 
SFA, to validate whether the estimated efficiency scores can be attributed to 
genuine differences in efficiency or data uncertainty. 

• Estimate frontier shift. Not only is this an essential parameter in setting cost 
allowances, but it can also help to identify flaws with the model that are not 
evident from cross-sectional analysis. 



 

 

Final A critical assessment of TCB18 electricity  
Oxera 

82 

 

By incorporating the recommendations presented in this report, CEER and 
Sumicsid (or any future consultant) will be better able to develop a robust 
model (or set of models) for cost benchmarking. In this regard, it can also be 
helpful to consider debriefs involving all the parties on process and 
methodology to help future studies.  
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A1 Sample R script 

A1.1 Description 

The script below performs Sumicsid’s second stage analysis on its model. It is 
written in the programme R,162 and uses data on cost and the cost drivers as 
calculated by Sumicsid, as well as the estimated efficiencies of TSOs 
calculated on a reduced model, leaving one cost driver out at a time. (See 
Table 5.2 of the report and accompanying text for a description of our review 
on this issue.) 

This script shows, by way of an example, that it is possible to publish modelling 
codes to enable better transparency regarding the approach followed by the 
consultant, while preserving the confidentiality of the TSO data.  

  

                                                
162 R is free statistical programming software and is available at https://www.r-project.org/. 

https://www.r-project.org/
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A1.2 Sample R script 
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