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•	 Type 1 error (false positive): the statistical estimation 
indicates that there is an effect, when the ‘true’ impact is 
zero; 

•	 Type 2 error (false negative): the statistical estimation 
indicates that there is no impact, when the ‘true’ impact 
is present.

In essence, a statistical significance test focuses on 
preventing Type 1 errors. To do this, the test determines  
the conditional probability of an estimate at least as large 
as that observed, when there is actually no effect, and 
accepts1 the existence of an effect when this conditional 
probability is below a chosen threshold. Unfortunately, 
statistical significance tests are often misunderstood as 
estimating the unconditional probability of a Type 1 error. 
This is a subtle distinction, but has important implications  
for how the outcome of the test should be considered in 
different contexts. This issue is discussed in more detail 
below.

More formally, statistically significance testing is part  
of a branch of statistics known as ‘hypothesis testing’.  
The approach, largely following the work of renowned  
statistician, Ronald Fisher,2 involves comparing the 
estimated impact against a ‘null hypothesis’ that there is 
actually no impact and that the estimated result has been 
driven purely by chance (e.g. due to a certain variation in the 
dataset). For example, suppose that statistical estimation in 
a merger context indicates that the opening of a local store 
by one merging party, A, reduces the prices of the other 
merging party, B, by 1%. While this is plausible according to 
economic theory (which posits that more local competition 
leads to lower prices), it may be that the new store of A is 

Greater availability of data and computing power has  
made statistics an increasingly accessible tool in regulatory 
investigations, policy analysis and litigation. In the majority of 
these applications, statistical analysis is used to estimate the 
impact of a specific action on market outcomes. This might 
include whether entry by a new supplier affects the prices of 
existing suppliers; whether a change in management has 
any effect on a firm’s efficiency; or whether a cartel had any 
impact on market prices.

In all cases, it is relevant to ascertain not only the size of  
the estimated impact, but also the reliability of the estimate.  
This typically involves testing for reliability from an 
economics perspective (i.e. whether the estimated impact 
makes economic sense), as well as from a statistical 
perspective (which usually involves deciding whether the 
estimated impact is sufficiently accurate to give confidence 
that the effect is real, and not a result of chance).

Statistical techniques can provide important information  
on the level of uncertainty around the estimated impact.  
By far the most common method is to consider whether  
the estimate is ‘statistically significant’.

What is statistical significance?

The aim of statistical techniques such as econometrics is 
to capture the ‘true’ relationships between different factors 
using observed data. In estimating the ‘true’ relationship—
and therefore the ‘true’ impact of one factor on another—it 
needs to be recognised that the estimated relationship  
could actually be a result of a chance correlation in the data, 
and that the ‘true’ effect is nil. When testing for the existence 
of a ‘true’ effect, two types of error can occur:

Unreliable evidence? How (not) to use statistical 
significance tests
Did a particular cartel cause prices to rise? Was a particular policy intervention effective? 
Is firm A more efficient than firm B? Quantitative economics, especially statistical analysis, 
is increasingly used in litigation and regulatory determinations, and to evaluate policy 
interventions. While statistics can test the reliability and extent of uncertainty of any analysis, 
these are not objective measures of right and wrong. How should, and shouldn’t, statistics be 
used in decision-making?
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actually too different (e.g. in terms of products or quality of 
service offered) to have any effect on B’s prices, and that the 
1% price impact is driven purely by the specific nuance of the 
dataset. In other words, there is a false positive outcome.

Fisher’s approach tests for the conditional probability of 
a false positive—i.e. the probability that the data would 
produce a result that is at least as large as the estimated 
impact when there is, in truth, no underlying relationship 
between the two factors. This probability is the ‘p-value’.

Using the merger example, if the p-value for the estimated 
price impact is found to be 0.5 then, if there were no real 
effect, a result at least as large as that observed would  
occur 50% of the time. On the other hand, if the p-value is 
0.01, this implies that, if there were no real effect, there is 
only a 1% chance that normal variations in the price charged 
by firm B would have resulted in a finding at least as large as 
that observed. All else being equal, the lower the p-value, 
the lower the probability that the estimated impact simply 
reflects normal variations in the underlying data. However, 
the p-value does not estimate the actual probability that 
the estimated impact simply reflects normal variations in 
the underlying data—this is because the test calculates 
the probability that the observed effect would occur on the 
assumption that there was no real effect. This is a common 
misconception, and is known as the ‘p-value fallacy’.   

Despite this issue in interpretation, Fisher’s statistical 
significance approach remains the benchmark for assessing 
the reliability of estimated effects in the majority of disciplines 
that use statistical analysis.3 The obvious questions are then: 
how low is low enough? What should be the threshold for the 
p-value below which the estimated relationship would  
be considered reliable?

Setting the bar

In principle, there is no fixed threshold below which an 
estimate is considered to be a reliable representation of 
a true underlying relationship—i.e. where the estimated 
relationship is ‘statistically significant’. This is because the 
choice of the threshold depends on the extent to which the 
risk of ‘errors’ can be tolerated given the problem at hand.

The level adopted as the threshold for the p-value reflects the 
conditional error rate for Type 1 errors—i.e. when there is no 
effect, how frequently the practitioner will mistakenly say that 
there is an effect. Also, given a threshold for the p-value, the 
procedure implicitly determines the conditional probability of 
a Type 2 error.

Hence, choosing the threshold presents a dilemma to 
practitioners: a stringent test with a low threshold runs  
the risk of rejecting a genuine effect (false negative), while 
a lenient test with a high threshold may cause random 
fluctuations in the data to be mistaken for a real effect  
(false positive).

Fisher’s personal preference was to use 5% as a threshold 
for the p-value. However, its subsequent adoption by the 
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How (not) to use statistical significance tests

majority of statisticians is only a convention and other 
thresholds, particularly 1% and 10%, are also commonly 
used by practitioners (but are also only conventions). 
Adopting these thresholds in all cases does not consider 
their impact on the ability of the procedure to identify real 
effects.

In general, the only way to improve the performance of 
the testing procedure is to obtain more data. As such, the 
appropriate threshold should be chosen depending on the 
context of the data available, the question being studied, 
and the reason for the study. This is because, in contrast to 
the situation envisaged by Fisher, much analysis must work 
within the constraints of the data that already exists. For 
example, when investigating the impact of a cartel or other 
competition law infringement, limitations and practicalities 
of record-keeping generally fix the amount of data that can 
be employed. Analysis may also be undertaken as part of a 
commercial decision-making process or policy evaluation 
with real budget considerations. In such cases the analysis 
does not seek to answer the philosophical question of 
whether an effect exists; rather, the focus is on determining 
the best estimate of an effect, given the data available.

If Fisher’s method is employed in these cases, the approach 
will effectively be to say that there is an effect only when the 
estimated size of the effect is sufficiently large—and often, 
this is not the intention of the analysis.4 In other words, it is 
sometimes necessary to fit the testing procedure around 
the data available, rather than to gather data to fit the 
testing procedure. This can mean moving the threshold in 
either direction. All else being equal, as the data available 
for study increases, the ability of the testing procedure to 
correctly identify effects that are present also increases. In 
many instances, particularly with the ever-increasing sizes 
of the datasets available for study, it may be reasonable to 
impose a threshold that is lower (and thus more stringent) 
than 5%. In other cases, where the dataset is small or ‘noisy’, 
the threshold may reasonably be higher.

There are no objective rules about how to make these 
decisions. An appropriate threshold needs to be chosen  
on a case-by-case basis, balancing the relative risks of the 
types of error that could be made in the context of that piece 
of analysis, and the subsequent costs and benefits.

Balancing the risks

As discussed above, there are two types of error in statistical 
significance testing: false positives and false negatives. The 
properties of statistical testing procedures with respect to 
these error types are defined conditionally:

•	 if there is an effect, what is the probability of identifying it 
and thereby avoiding false negatives (technically known 
as the power of the test)? 

•	 if there is no effect, what is the probability of mistakenly 
saying that there is and thereby reaching a false positive 
(technically known as the size of the test)?
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In general, the only way to improve both of these at the 
same time is to use more data. As discussed above, this is 
often not practical. In some cases, the power of the test can 
be improved without increasing the size of the dataset, by 
carefully structuring the test to account only for the effects 
that might conceivably exist. For example, when testing 
the estimated effect of a cartel on prices, the test could be 
restricted to identifying effects greater than zero, rather than 
all those effects that are different from zero (that is, to ignore 
the possibility that the cartel lowered prices). This would 
increase the power of the test without increasing the size  
of the dataset.

As a rule, however, the question of interest is not the 
conditional probability of the error types, but the inference  
that can be made on the basis of particular results. The 
correct inference can be quite different from the levels implied 
by the size and power of the test. For example, suppose that 
a financial economist has devised a test—for whether a stock 
is subject to insider trading—which is 90% accurate when an 
infringement has taken place, but also spuriously indicates 
insider trading in 5% of cases when no infringement has 
taken place. That is, the test has a size of 5% and a power 
of 90%. On this basis, the test appears to be fairly accurate. 
Now suppose that 1% of stocks are actually subject to 
insider trading—how likely is it that an infringement actually 
took place when the test indicates it did? The answer is 
surprisingly low, at 15.3%.5 This indicates a high risk of a  
false positive. Conversely, the likelihood that insider trading 
has taken place when the test indicates no infringement  
(a false negative) is extremely low, at 0.01%.6

Using these probabilities, a financial regulator could make 
informed decisions about what course of action to follow on 
the basis of the outcome of the test. The problem is that the 
authority does not know the proportion of stocks (1% in the 
above example) in which insider trading has occurred in the 
first place.

A ‘Bayesian’ statistician would say that the financial regulator 
should be able to get a good idea of the probability of insider 
trading from market research or economic theory. Bayesian 
statisticians approach statistical testing with quantified prior 

beliefs about the likelihood of particular outcomes (e.g. from 
previous studies or theoretical predictions), and update 
those beliefs based on the data available. This is in contrast 
to ‘frequentist’ statisticians (including Fisher), who believe 
that having a quantified prior belief of a probability does not 
make sense—either insider trading took place in a specific 
case, or it did not.

Bayesian approaches are not commonly used in  
hypothesis testing, but the principles can help  
decision-makers understand how to treat the outcome of 
statistical significance tests. In particular, in cases where 
outside evidence suggests that a particular effect is highly 
likely to occur, but the statistical significance does not  
meet conventional academic standards, caution should  
be exercised in rejecting the finding. Conversely, if an effect 
is highly unlikely, a prudent decision-maker should bear in 
mind the risk of false positives when assessing the result 
of statistical tests based on conventional standards of 
significance.

Conclusion

The methods commonly used by statisticians, including 
economists, to test whether results are statistically 
significant do not provide estimates of whether a conclusion 
is right or wrong. Conventional statistical significance testing 
using a 5% threshold is a rule of thumb that places varying 
evidential standards on the results of analysis, and does 
not consider what the purpose of the analysis is in the first 
place—i.e. whether it is to provide the best possible  
estimate of the effect, or to test for the existence of the  
effect (and, if so, to what standard).

Practitioners using statistics for decision-making  
purposes should base decisions on the strength of the 
evidence, including information that is external to the  
specific dataset available. A balanced review of the available 
evidence on the size and likelihood of effects, the costs and 
benefits of different options, and the relative risks of false 
positives and negatives, is usually the key to making the right 
judgement.

1 Technically, ‘does not reject’.

2 For example, see Fisher, R.A. (1925), Statistical Methods for Research Workers, Oliver and Boyd.

3 Although one journal, Epidemiology, did attempt to ban them from the articles that it published.

4 In extreme cases, the only effects that might be considered statistically significant, given a particular level of variability in the data, might lie entirely 
outside the reasonable range that the effects could take.

5 The 15.3% figure is calculated as follows: 1% of stocks are insider-traded, of which 90% are accurately identified, giving 0.9% of the total stocks. 
99% of stocks are not insider-traded, but in 5% of these cases the test erroneously suggests that they are—i.e. 4.95% of stocks. In total, then,  
0.9/(0.9+4.95) = 15.3% of stocks that test positively have actually been insider-traded.

6 The 0.01% figure is calculated as follows: 1% of stocks are insider-traded, of which 10% are erroneously identified as not being insider-traded—i.e. 
0.1% of total stocks. 99% of stocks are not insider-traded, of which 95% are correctly identified as not being insider-traded—i.e. 94.05% of all stocks. 
In total, then, 0.1/(0.1+94.05) = 0.01%.


