### **Telecommunications Act 2001**

Section 64 Review and Schedule 3 Investigation into unbundling the local loop network and the fixed Public Data Network

### FINAL REPORT APPENDICES Public Version

December 2003



AUCKLAND: Gosling Chapman Building, 63 Albert Street, P.O. Box 105-222, AUCKLAND CENTRAL, NEW ZEALAND. Tel: (09) 377 3094, Fax: (09) 377 3561

WELLINGTON: Level 10, 44-52 The Terrace, P.O. Box 2351, WELLINGTON, NEW ZEALAND. Tel: (04) 924 3600, Fax (04) 924 3700 CHRISTCHURCH: Riverlands House, 31 Victoria Street, P.O. Box 25-193, CHRISTCHURCH, NEW ZEALAND. Tel: (03) 379 3284, Fax (03) 366 1311

## **Table of Contents**

APPENDIX 1: List of Submissions on the draft report

APPENDIX 2: Modelling the Impact of Unbundling the Local Loop and Fixed Public Data Network: Report by OXERA, December 2003

Estimating the Relative Efficiency of Telecom New Zealand: Report by OXERA, December 2003

- APPENDIX 3: Pricing of Unbundled Access: Report by COVEC, December 2003
- **APPENDIX 4: International Summary Statistics**

APPENDIX 5: ADSL bitstream access service definition

# **APPENDIX 1: List of Submissions on the draft report**

| 1.  | Alcatel New Zealand                                        | 29 October 2003    |
|-----|------------------------------------------------------------|--------------------|
| 2.  | Bay City New Zealand                                       | 29 October 2003    |
| 3.  | Brandspank Limited                                         | 29 October 2003    |
| 4.  | Broadcast Communications Limited                           | 29 October 2003    |
| 5.  | Business NZ                                                | 29 October 2003    |
| 6.  | CallPlus                                                   | 29 October 2003    |
| 7.  | Canterbury Employers' Chamber of Commerce                  | 7 November 2003    |
| 8.  | Chime Communications Pty Ltd                               | 22 October 2003    |
| 9.  | Christchurch City Council                                  | 17 September 2003  |
| 10. | Cisco Systems                                              | 8 December 2003    |
| 11. | Consumers' Institute                                       | 3 October 2003     |
| 12. | Counties Power                                             | 28 October 2003    |
| 13. | Daybreak Pacific                                           | 29 October 2003    |
| 14. | Federated Farmers of New Zealand Inc                       | 23 October 2003    |
| 15. | Mr Sam Fickling, a member of the public                    | 7 October 2003     |
| 16. | Mr Roelant Hofmans, a member of the public                 | 22 September 2003  |
| 17. | IHUG                                                       | 28 October 2003    |
| 18. | Internet NZ                                                | 29 October 2003    |
| 19. | Mr Alistair Lane, a member of the public                   | 6 October 2003     |
| 20. | Mr Steve Massey, a member of the public                    | 8 October 2003     |
| 21. | New Zealand Business Roundtable                            | 15 October 2003    |
| 22. | National Gas Corporation of New Zealand                    | 30 October 2003    |
| 23. | North Shore City Council                                   | 28 October 2003    |
| 24. | New Zealand Exchange                                       | 29 October 2003    |
| 25. | Swiftel                                                    | 29 October 2003    |
| 26. | Team Talk                                                  | 28 October 2003    |
| 27. | Telecom                                                    | 29 October 2003    |
| 28. | TelstraClear                                               | 29 October 2003    |
| 29. | Tertiary Accord of New Zealand                             | 18 September 2003  |
| 30. | The Pacific.net                                            | 29 October 2003    |
| 31. | Telecommunications Users Association of New Zealand (TUANZ | Z) 29 October 2003 |
| 32. | Mr Shane Turner, a member of the public                    | 3 November 2003    |
| 33. | Visionstream Pty Limited                                   | 27 October 2003    |
| 34. | Woosh                                                      | 29 October 2003    |
| 35. | Zespri International                                       | 20 October 2003    |

APPENDIX 2: Modelling the Impact of Unbundling the Local Loop and Fixed Public Data Network: Report by OXERA, December 2003

Estimating the Relative Efficiency of Telecom New Zealand: Report by OXERA, December 2003



**OXFORD ECONOMIC RESEARCH ASSOCIATES** 

## NEW ZEALAND COMMERCE COMMISSION

## MODELLING THE IMPACT OF UNBUNDLING THE LOCAL LOOP AND FIXED PUBLIC DATA NETWORK

**DECEMBER 2003** 

Blue Boar Court Alfred Street Oxford OX1 4EH Tel: +44 (0) 1865 253000 Fax: +44 (0) 1865 251172 Email: Enquiries@oxera.co.uk OXERA Consulting Ltd is registered in England, no. 2589629. Registered office: Blue Boar Court, Alfred Street, Oxford OX1 4EH, UK. Although every effort has been made to ensure the accuracy of the material and the integrity of the analysis presented herein, OXERA Consulting Ltd accepts no liability for any actions taken on the basis of its contents.

OXERA Consulting Ltd is not licensed in the conduct of investment business as defined in the Financial Services and Markets Act 2000. Anyone considering a specific investment should consult their own broker or other investment adviser. OXERA Consulting Ltd accepts no liability for any specific investment decision which must be at the investor's own risk.

## Contents

| 1. | Introduction |                                                         |    |  |
|----|--------------|---------------------------------------------------------|----|--|
| 2. | Аррг         | roach to Cost–Benefit Analysis                          | 4  |  |
|    | 2.1          | Introduction                                            | 4  |  |
|    | 2.2          | Unbundled products                                      | 7  |  |
|    | 2.3          | Where does new entry occur?                             | 10 |  |
|    | 2.4          | Retail price effects following entry                    | 14 |  |
|    | 2.5          | Market outcome in the absence of entry                  | 15 |  |
|    | 2.6          | Valuing consumer benefits                               | 16 |  |
| 3. | Resu         | ults                                                    | 20 |  |
|    | 3.1          | Sensitivity analysis                                    | 24 |  |
| 4. | Mode         | el Structure                                            | 27 |  |
|    | 4.1          | Counterfactual                                          | 27 |  |
|    | 4.2          | DSL data unbundling                                     | 28 |  |
|    | 4.3          | Voice unbundling                                        | 34 |  |
|    | 4.4          | Bitstream access                                        | 36 |  |
|    | 4.5          | Fixed PDN                                               | 37 |  |
|    | 4.6          | Impacts of other regulatory decisions                   | 39 |  |
| 5. | Data         | Employed                                                | 40 |  |
|    | 5.1          | Modelling assumptions                                   | 41 |  |
|    | 5.2          | Price derivation and price levels in the counterfactual | 45 |  |
|    | 5.3          | Price derivation and price levels under specification   | 50 |  |
|    | 5.4          | Price derivation and price levels under designation     | 54 |  |

## 1. Introduction

The Telecommunications Act 2001 (the Act) regulates the supply of telecommunications services in New Zealand. It establishes the potential for the local telecommunications network to be unbundled in order to introduce competition in the provision of local services. Under Section 64 of the Act, the Commerce Commission (the Commission) is required to undertake a review of whether access to the unbundled elements of the local-loop network of incumbent, Telecom New Zealand (TCNZ), and access to the unbundled elements of, and interconnection with, TCNZ's fixed Public Data Network (PDN) should be regulated.

Two regulatory scenarios are under review:

- *specification*, which allows non-price aspects to be regulated, with wholesale prices assumed to be set competitively through commercial negotiation;
- *designation*, which allows the Commission to regulate wholesale price if the parties are unable to reach commercial agreement themselves.

OXERA was asked by the Commission to carry out economic cost-benefit modelling in support of this review.<sup>1</sup> This paper outlines the structure of the model constructed to address whether local-loop unbundling (LLU) or unbundling of the fixed PDN should be regulated, and presents the results of the analysis. The analysis focuses on the impact of a regulatory decision on the consumer, compared with a 'counterfactual' scenario—ie, what would have happened in the absence of regulation. The impact of regulation is therefore presented as an incremental change relative to the counterfactual.

Consumers might expect to benefit from regulatory intervention through lower prices and potentially more and better services. This impact on consumers is measured by reference to the consumer surplus that is generated. From an economic standpoint, this surplus is generated by lower prices for the existing installed base (the 'price effect'), plus an increase in take-up (a 'take-up effect') and a potential improvement in the level of service innovation. The methodology by which these effects can be identified is detailed in section 2.6 of this paper.

LLU allows new entrants direct access to the consumer by permitting them to rent the copper loop or physical connection. Voice and data services that compete with the incumbent may then be provided. Hence, LLU can be used to proxy for full facilities-based competition, without the potential efficiency drawbacks of duplicating the local network.

Unbundling can be preferable to service-based competition (using wholesale input services provided by TCNZ), as it allows entrants to provide new and more innovative services over the local network. Wholesale access restricts the entrant to delivering

<sup>&</sup>lt;sup>1</sup> OXERA was provided with technical advice throughout the project by InterConnect Communications Ltd.

services based on the capabilities of the TCNZ underlying network, likely to be similar to TCNZ's retail offerings.

In general, the competitive provision of data services is a strong *ex ante* rationale for unbundling. The only competition in access that TCNZ currently faces is in certain geographic areas where there is a cable network, as well as some satellite and wireless services. However, unbundling may not necessarily result in a net benefit—there are significant costs involved, including that of establishing the physical point of interconnection, and commercial, technical and operational procedures.

The regulatory options analysed in the modelling are:<sup>2</sup>

- Option 1: Full unbundling;
- Option 2: Line sharing;
- Option 3: Bitstream access;
- Option 4: Unbundling of, and interconnection to, the fixed PDN.

*Full unbundling* would allow for an entrant to provide both data and voice services over the local loop. *Line sharing*, also known as 'shared access', refers to an entrant providing data services over the high-frequency portion of the copper loop, while TCNZ continues to supply voice services. In both instances of unbundling, the entrant invests in upgrading the local loop and installing the appropriate capital equipment on the exchange side, such as digital subscriber line access multiplexers (DSLAMs).<sup>3</sup>

*Bitstream access* refers to the situation where the incumbent installs a high-speed access link to the customer premises. This may be through the installation of appropriate ADSL equipment and configuration in the local access network. This access link is made available to other operators, which are then able to provide high-speed services to end-consumers. In effect, bitstream access is the provision of transmission capacity.<sup>4</sup>

The fixed PDN is used to provide a number of distinct data services. Unbundling of, and interconnection to, the fixed PDN would allow entrants access to end-consumers (businesses) in order to provide a variety of data services.

This paper details, in section 2, the economic basis for the methodology adopted in the modelling, and presents the results in section 3. The methodology used is explained in section 4. Data relating to the construction of the model, including prices and costs, is set out in section 5.

<sup>&</sup>lt;sup>2</sup> Using the scenarios as defined elsewhere by the Commission, Options 1 and 2 together are equivalent to Scenario A; Option 3 corresponds to Scenario B; and Option 4 corresponds to Scenario C.

<sup>&</sup>lt;sup>3</sup> These would be installed in an exchange (or equivalent) to allow for the provision of DSL services to the endconsumer over the copper loop. The consumer requires an appropriate DSL modem.

<sup>&</sup>lt;sup>4</sup> See European Commission (2001), 'High Speed Bitstream Access', ONPCOM0-18 Rev 1, September.

This report is a final version of the OXERA draft report published in September 2003 in conjunction with the Commission's draft report. The Commission subsequently received submissions from interested parties, and held a Conference in November 2003, where the issues raised by unbundling were discussed in detail. This report (and the associated modelling) has taken into account the submissions and presentations received by the Commission.

## 2. Approach to Cost–Benefit Analysis

### 2.1 Introduction

Any regulatory decision should take into account the ultimate impact on consumers, and such intervention in the market should be motivated by an expectation that it will improve consumer welfare. In this regard, the relative impact on different *firms* within the market (incumbent or entrants) is of secondary importance, subject only to the requirement that any intervention does not impede their ability to deliver the requisite services to consumers.<sup>5</sup>

Any regulatory intervention will affect both consumers and producers, and cost-benefit analysis (CBA) can focus on either or both of these groups, depending on the purpose for which the analysis is being undertaken. In economic terms, the primary group of interest for appraising a regulatory intervention is consumers; producers are of concern only to the extent that the impact of the regulatory intervention may affect the product(s) delivered to consumers. For example, if it is considered that the regulatory proposal may impede investment, either at present or in the future, the effect on producers would need to be examined. However, the producer surplus generated would not be counted as a benefit of the intervention, and, likewise, a reduction in producer surplus (provided it does not impede service delivery or welfare-enhancing investment) would not be counted as a cost of the regulatory intervention.

The objective of the cost-benefit modelling is to determine whether there is a net benefit to end-users—both business and residential—from the various forms of unbundling being proposed. The net benefits are the result of setting the costs of unbundling against the benefits received by consumers, and, if the costs were sufficiently large, the net benefits could be negative, indicating a welfare loss as a result of unbundling.

The driver of consumer benefits is new market entry. For each unbundling option, the model forecasts when it is likely (ie, commercially viable) that firms will enter. Consumers benefit from entry in a number of ways, as a result of competitive pressure:

- price reductions for services they already receive;
- the expansion of existing services to those consumers that cannot currently receive them;
- the introduction of innovative new services.

The CBA is neutral as to whether the net benefits are derived from TCNZ or particular entrants, or even whether entry has to occur for the benefits to be realised. For example, there may be a reduction in TCNZ's prices as a result of the threat of entry, even though

<sup>&</sup>lt;sup>5</sup> For example, regulators may take into account the impact of price controls on the incentive for firms (especially the incumbent) to continue to invest in the network and/or innovative service provision.

no new entry actually occurs; this effect is not included in the model, but such benefits would be weighted equally with the benefits arising where entry does occur.

Three forms of potential cost result from unbundling:

- the direct costs of undertaking unbundling, such as operation and support system (OSS) costs, incurred by both the incumbent and the entrant;
- productive-efficiency losses, as a result of the reduction in scale economies generated by TCNZ when local lines are unbundled;
- dynamic-efficiency losses, if unbundling (or the threat of it) deters welfareenhancing investment.

Given the emphasis placed upon efficiency in the Telecommunications Act, an important aspect of the modelling is the extent to which this approach captures efficiency gains or losses (allocative, productive or dynamic) that may result from regulatory intervention. Productive efficiency occurs when goods are produced at minimum cost; allocative efficiency ensures that prices are cost-reflective; and dynamic efficiency results from enhanced levels of innovation and investment in the future.

A CBA approach focused on consumer benefit does not explicitly model efficiency gains or losses. Accurately estimating efficiency gains would be a complex exercise, requiring detailed cost modelling of the incumbent and potential entrants, for which all the necessary information is unlikely to be available. In addition, the cost structure of the industry (high fixed costs and low marginal costs) means that a wide range of pricing behaviour could be considered to deliver a similar degree of allocative efficiency. Furthermore, estimation of dynamic efficiency may be speculative since it is entirely forward-looking.

An alternative to modelling the efficiency impacts directly is to estimate the consumer benefits arising from liberalisation. This approach has the advantage of implicitly capturing the allocative- and productive-efficiency gains arising from increased competition, which are passed on to consumers, while disregarding those that are reinvested by the firms or retained as profit.

Two issues that are not directly captured by the methodology, however, need to be addressed: the extent of the negative impacts of unbundling on the incumbent's productive efficiency, and any potential effects on future investment that may lower dynamic efficiency.

In its submissions in response to the draft report, and at the Commission's Conference, November 10th–14th, TCNZ argued that unbundling would result in a loss of economies of scale of operation. Its arguments about the negative impacts of unbundling are derived from the Charles River Associates report, reproduced as Annex A in TCNZ's submission on the draft report. In particular, this raises a number of reasons why the anticipated negative results are likely to arise (see para 154), which can be paraphrased as follows. Unbundling could:

- reduce investment incentives to improve productive efficiency, as entrants would also gain;
- lead to a loss of economies of scale and/or additional costs;
- result in substantial regulatory costs.

Each of these issues is now considered in turn.

While it is conceivable that unbundling could reduce incentives for further investment to drive productivity growth, this is not supported by international evidence. OECD (2001) documents a number of countries where significant investments in the local access infrastructure have continued to be made following unbundling.<sup>6</sup> These include the USA, Germany, Canada, France and Ireland.

This suggests that it is unlikely that TCNZ would reduce its productive-efficiencyenhancing investment as a result of unbundling. Furthermore, withholding this investment implies that TCNZ itself would also not benefit from any available cost savings. The results from the CBA modelling suggest that, at most, around 80,000 lines would be unbundled (in Option 3), compared with a total number of access lines in New Zealand of around 1.7m. Given that this implies unbundling of a maximum of 5% of access lines, the cost savings to TCNZ on the remaining unbundled lines are likely to significantly outweigh any adverse effect from allowing unbundling entrants also to gain from this investment. On this basis, it would not seem plausible for TCNZ to withhold such investment.

Similarly, there may be a loss of economies of scale from unbundling, although it is difficult to accept this proposition without substantive empirical evidence. Ideally, this would be in the form of a detailed cost study of TCNZ's network, identifying exactly what equipment would need to be deployed, how this would affect TCNZ's network operation, and estimates of the change in unit costs as a result of the loss of the unbundled local loops.

TCNZ did not undertake such a cost-estimation exercise. Furthermore, Charles River Associates presented few, if any, empirical studies to support its own conclusions on the negative impacts of unbundling. Indeed, a detailed literature search reveals that there are few empirical analyses of the impact of unbundling on the productive efficiency of incumbent telecommunications firms. The research that does exist indicates that the potential losses of economies of scale from local-loop competition are small, and likely to be outweighed by the gains from competition.<sup>7</sup>

Thus, neither a detailed cost analysis nor relevant empirical research supporting TCNZ's proposition has been presented, which makes it difficult to substantiate a change to the assumption in the draft report that the effects on economies of scale for the incumbent would be minimal.

<sup>&</sup>lt;sup>6</sup> OECD (2001), 'The Development of Broadband and Information Services Policies', Working Party on Telecommunications and Information Services Policies.

<sup>&</sup>lt;sup>7</sup> See Correa, L. (2003), 'Natural or Unnatural Monopolies in UK Telecommunications', Department of Economics, Queen Mary, University of London, Working Paper No. 501, September.

The final issue raised by TCNZ was the matter of the burden of regulatory costs. However, this is largely endogenous to TCNZ's own behaviour, and is therefore a cost under its own control, rather than a function of unbundling per se. For modelling purposes, the Commission provided estimates of reasonable regulatory costs that are likely to be incurred by TCNZ and potential entrants.

In addition, many studies indicate that the introduction of competition in telecommunications markets previously dominated by an incumbent monopoly can yield substantial consumer benefits.<sup>8</sup> These benefits take the form of improved productive and allocative efficiency, as well greater innovation and improved service levels (considered below).

On balance, unbundling would appear to be more likely to result in net efficiency gains than losses, although, as discussed, some negative effects might arise. For this reason, the modelling uses conservative estimates for the productive-efficiency catch-up estimate and the allocative-efficiency (profitability) gain. These are more likely to underestimate than overestimate the true welfare impacts of unbundling.

In its main report, the Commission concluded, on the evidence available to it, that it could not be satisfied that unbundling would create sufficient negative investment incentives such that would the dynamic efficiency gains achieved though competition would be outweighed.

In summary, therefore, rather than dynamic-efficiency losses from unbundling, it would seem likely that there would be gains. In terms of the cost-benefit model, given the uncertain nature of dynamic-efficiency gains, it is not possible to estimate them explicitly. Rather, it can be posited that there are likely to be greater dynamic-efficiency gains as a result of introducing competition than those included in the modelling.

### 2.2 Unbundled products

This section considers the services that have been modelled for the purposes of the CBA. Two types of service can be delivered to consumers through fixed copper telephone wires: voice and data. While voice services are reasonably static in their characteristics and current innovation relates mainly to tariff structure or related value-added services (eg, call minding),<sup>9</sup> data services are potentially very varied.

<sup>&</sup>lt;sup>8</sup> See, for example, Li, W. and Xu, L. (2002), 'The Impact of Privatisation and Competition in the Telecommunications Sector around the World', Darden Graduate School of Business Administration, University of Virginia. Ros, A. (1999), 'Does Ownership or Competition Matter? The Effects of Telecommunications Reform on Network Expansion and Efficiency', *Journal of Regulatory Economics*, **15**:1. OECD (2002), 'Closing Statement: OECD Conference on Telecommunications Policy for the Digital Economy', Dubai, January 22nd. Boyland, O. and Nicoletti, G. (2001), 'Regulations, Market Structure and Performance in Telecommunications', OECD Economic Studies, 32, 99–142.

<sup>&</sup>lt;sup>9</sup> It is for this reason that voice services are often referred to as POTS—plain old telephony services. However, at the Conference, there was extensive discussion of the conversation to voice over Internet Protocol (VoIP). This is a

The standard services provided using data capacity (the high-frequency bandwidth on the copper access pair) are data transmission, including access to the Internet and email. However, many more uses can be made of the data capability, including information services, VoIP, and, ultimately, video over the fixed wireline. VoIP and video over the fixed wireline are currently at the edge of commercial feasibility, and have been rolled out only on a small basis in a few countries, although many trials are being undertaken.<sup>10</sup>

Given the scope for increasing the diversity of data services available to consumers and the standard nature of voice telephony (with the exception of VoIP), the most attractive commercial proposition for new entrants usually relates to data services. These offer the greatest opportunity to deliver value-added products to consumers, and hence to extract higher revenues. For this reason, entrants in most countries around the world have unbundled the local loop primarily in order to provide data services.

For tractability, it is necessary to use only a single product in the modelling (ie, a single representative product for each of the business and residential segments). However, there are many different products currently available on the market, and it is likely that even more will be provided in future as a result of investment and innovation.

To generate a price for a representative product, a weighted average of the September 2003 prices is calculated for the different TCNZ products that are available. This effectively produces a standardised product consumed in 2003, and the model predicts the effects of changes in its price. In practice, for LLU and bitstream, this is a weighted composite of the various Jetstream products currently available.

There was extensive discussion at the Conference about the likely new services that will be delivered in the foreseeable future. In particular, the bundle of products available to consumers is likely to expand, although the average amount they spend each month may remain reasonably constant. This service innovation could be one of the significant benefits of LLU, as entrants cannot deliver new services through the existing wholesale access provisions.

However, the innovations proposed by both TCNZ and prospective new entrants have both uncertain characteristics and an unknown consumer valuation. As a result of this uncertainty, it is not possible to model explicitly these potential innovations.

Thus, the modelled services that are expected to be unbundled are data and (for full unbundling only) voice. While the latter has not generally been an attractive service for entrants to provide elsewhere in the world, the situation in New Zealand is potentially

technological innovation, but the service presented to the consumer would not fundamentally change in its characteristics.

<sup>&</sup>lt;sup>10</sup> Although cable networks currently provide television over a fixed wireline, they do this by separating services between two cables. Television and data services are provided on one cable, while a separate dedicated cable carries the voice service. In contrast, provision of data services (potentially including television) over PSTN lines involves a single wire for both data and voice, complicating the spectrum management issues.

different, as TCNZ only relatively recently became subject to sector-specific regulation. As a result, TCNZ might continue to earn substantial returns on its voice services.

In principle, this outcome would suggest that voice services could also provide entrants with considerable opportunity to earn a reasonable profit. However, the standardised nature of voice services means that it is straightforward for TCNZ to respond aggressively to any new entrant with regard to price. Furthermore, the lack of geographical averaging means that the response to entry may be selective. Given that TCNZ, as the incumbent, has already sunk its investment costs and hence faces a lower cost (even if all other costs were equal) than a new entrant, the risks for an entrant unbundling voice-only services would be high.

Therefore, notwithstanding the absence until recently of any sector-specific regulation of TCNZ's voice services, it is assumed that an entrant's principal reason for unbundling is to provide data services, and they would not unbundle an exchange solely to provide voice services. However, as noted, the unbundling options under discussion allow the entrant to unbundle the whole copper loop to provide both data *and* voice services to consumers (full unbundling); or to unbundle only to deliver data services, with TCNZ continuing to provide voice telephony (line sharing). Line sharing is technically more complex in terms of spectrum management, and hence is more costly at the wholesale level.

Where an entrant has unbundled an exchange to provide voice and data services, it is assumed that they will also provide voice-only services to any consumer wishing to take them. This is because, while the risks of unbundling solely for voice may be significant, the incremental costs of providing voice-only services once the exchange has already been fully unbundled (for data and voice combined) are negligible.

Having identified the product(s) to be unbundled, a number of questions must be addressed in the modelling:

- where does new entry occur?
- what happens in the absence of new entry?
- how are retail prices likely to change following entry?
- how should the benefits to consumers be valued?

Each of these questions is considered below, along with an outline of the approach that has been adopted.

Where assumptions have to be made, the overall approach of the model is to be conservative. That is, where choices have to be taken regarding the model's components, the option that would reduce the likelihood of entry occurring has been selected. For example, if there is a range of reasonable values for a particular cost entering into the designated price or costs of entry, the higher end of the range has been selected. The rationale behind this approach is that the model is more likely to under- than over-predict the level of entry, and it thus errs on the side of caution. This reflects the balance of risks in a regulatory decision: there are usually greater risks attached with intervening in a market in an incorrect manner than deciding not to act. The latter provides the option to intervene at a later date.

### 2.3 Where does new entry occur?

TCNZ is in the process of upgrading many of its local exchanges to digital data capability through the installation of DSLAMs, inter alia. This allows the bit rate to be increased to provide high-speed data transmission. In the first instance, this is asymmetric (ADSL), with considerably greater speeds downstream than upstream.<sup>11</sup>

One of the characteristics of ADSL is that the further the customer is located from the local exchange, the more the bit rate degrades. Therefore, to ensure that a reasonable number of customers can be provided with the same service, the highest bit rates are often not guaranteed, especially to rural customers. In general, only those customers sufficiently close to the exchanges may receive higher line speeds, and this usually produces a distance cut-off point of about 7km for ADSL services.

It is possible to upgrade lines to provide a guaranteed symmetric line speed of 2 Mbps or higher through the use of other technology, such as SHDSL (symmetric high-speed digital subscriber line), although customers must usually be within 2km of their local exchange to take advantage of these higher speeds. The advantage of such high committed rates is that more advanced and bandwidth-intensive services, such as linear broadcast television,<sup>12</sup> can be provided over telephone lines.

For the CBA, it is assumed that TCNZ and the entrant(s) will upgrade to provide ADSL services only, although at least one of the potential entrants that replied to the Commission's Issues Paper considered that it would aim to provide SHDSL services, as TCNZ does through its NGN.

When deciding whether to enter at a particular exchange, an entrant will take into account the following aspects:

- whether the lines are technically upgradeable;
- the likely take-up of broadband services; and
- commercial viability.

### 2.3.1 Technical capacity

Not all lines in a local exchange can be provided with high-speed data services. The lines available to an operator upgrading the exchange are therefore likely to be a subset of the total number of lines in that exchange-serving area (ESA). Hence, the first calculation for an entrant (or TCNZ) is the number of lines that could be technically upgraded. This calculation involves establishing the number of lines within the required distance from the

<sup>&</sup>lt;sup>11</sup> The downstream rate (ie, towards the customer) is up to 2 megabits per second (Mbps).

<sup>&</sup>lt;sup>12</sup> This is distinct from video-on-demand (VoD) services. With appropriate receiver equipment (ie, a hard disk drive), VoD services can be provided as a download rather than streamed content. This requires a considerably lower bit rate than streamed video, of which linear broadcast television would be an example. Hence, downloadable VoD services are feasible over standard ADSL connections, while broadcast television is not.

exchange. Also, as discussed above, this is a function of the committed line speed that the operator wants to offer; in the model, the cut-off for ADSL is taken to be 7km (although this assumption can be varied).

Other technical characteristics of local lines that can make the upgrading of relevant lines impossible, or at least considerably more expensive, include the existence of sub-loops, where lines are served from a cabinet that is remote from the exchange itself, and may be connected to the exchange by optical fibre or some other form of distribution line. For spectrum management reasons, it is not possible to serve sub-loops from a DSLAM sited in an exchange, especially if TCNZ has already upgraded the lines by placing a DSLAM in the cabinet itself. As cabinets are very small, there may be insufficient space to accommodate an entrant's DSLAM as well as that of TCNZ (even when using mini-DSLAMs). Moreover, it may be uneconomic for two firms to serve the small number of end-user lines connected to a sub-loop.

As a result, the number of technically upgradeable lines in the model excludes any lines sited on sub-loops. Although this may not reflect actual practice in all cases, in terms of the CBA it is a conservative assumption because it reduces the number of subscribers that might receive upgraded services and the benefits of competition.

Further technical issues to be taken into account concern those lines connected with noncopper distribution lines, such as those employing pulse code modulation (PCM). As PCM inhibits the deployment of ADSL services, these lines have been excluded. There may also be spectrum management issues relating to interference between lines within a cable sheath. Evidence from Australia suggests that, in practice, the likelihood of this causing a material deterioration in service is very low (around 1%); the central case in the model therefore assumes that the reduction in serviceable lines due to interference is zero, although this interference factor could be modified.

These adjustments yield the number of technically upgradeable lines in each ESA, which form the baseline volume for the subsequent analysis.

### 2.3.2 Take-up of broadband services

Having established the number of technically feasible lines for upgrading, it is necessary to identify the likely purchase of broadband by consumers. Not all consumers are interested in high-speed data services, and, of those who are, not all can afford them. As the decision of whether to upgrade an exchange is a commercial one, the potential demand for the services must be established.

At present, New Zealand has a high level of total Internet penetration by household, relative to other countries, and this is mainly narrowband dial-up rather than broadband. Indeed, there are only around [ $\gg$ ] TDR residential ADSL subscribers in the country. The level of Internet access also varies between the different geographic areas in New Zealand.

To identify the profile of take-up of broadband services across the modelling period, two alternative approaches can be adopted: a modelling approach based on reasonable assumptions, or a third-party estimation of future demand. In the draft report and model, OXERA adopted the former approach, deducing reasonable assumptions and using these to generate the counterfactual and scenario outcomes. For the final model, the Commission requested that the take-up profile and penetration rates be adjusted so that

the counterfactual in the model replicated TCNZ's projected broadband subscription rates to 2010.

The model generates the projected number of broadband subscribers by assuming that a proportion of those households currently purchasing Internet services would, over time, adopt high-speed services. Therefore, the penetration rate (of broadband) is likely to be a percentage of the present and future Internet usage rate. To replicate TCNZ's take-up figures for the counterfactual, it is assumed that up to 35% of *Internet* households will take broadband. This is adjusted upwards in the options to account for the increased market-penetration (elasticity) effects of any price reductions that result from competitive entry.

This methodology is illustrated in Table 2.1. The percentage of Internet households is multiplied by the base percentage to produce the penetration rate for the counterfactual. For example, this would be 17.9% ( $35\% \times 51\%$ ) for metro areas. In the scenarios there is a price fall, which is combined with the elasticity effect and the base percentage to produce a moderated base percentage. As above, this is multiplied by the percentage of Internet households to determine the penetration in the scenarios.

| Area     | Internet<br>penetration 2003<br>(households) | Base<br>percentage | Price<br>fall | Elasticity | Moderated<br>base<br>percentage | Penetration rate |
|----------|----------------------------------------------|--------------------|---------------|------------|---------------------------------|------------------|
|          | (A)                                          | (B)                | (C)           | (D)        | (E=B+(C x D))                   | (E x A)          |
| Metro    | 51                                           | 35                 | 15            | -1.5       | 57.5                            | 29               |
| Urban    | 36                                           | 35                 | 15            | -1.5       | 57.5                            | 21               |
| Suburban | 39                                           | 35                 | 15            | -1.5       | 57.5                            | 22               |
| Rural    | 43                                           | 35                 | 15            | -1.5       | 57.5                            | 25               |

| Table 2.1: | Calculation | of the | penetration | rate (%) |
|------------|-------------|--------|-------------|----------|
|------------|-------------|--------|-------------|----------|

Source: OXERA analysis.

An identical process is used for business penetration of broadband, but in this case the initial Internet penetration (equivalent to column A) is 85%, and the base percentage is 40% (column B).

This relationship was used to generate the total likely penetration of broadband services for both business and residential customers for any given price level, which, in the absence of any rationale to make adjustments by geographic region, was applied uniformly to all ESAs.

However, consumers will not switch to broadband immediately; as with any technological product, there will be a gradual adoption as consumers become more aware of the service and its characteristics. An adoption profile has therefore been generated that moderates the speed with which the penetration increases towards its determined maximum. The adoption rate in the draft report was derived from the historical take-up of personal computers (PCs) in New Zealand. For the final report, the glide path for business and residential customers was modelled separately and configured in order to approximate TCNZ's expected customer take-up.

In addition, it is recognised that not all consumers interested in broadband will take ADSL. Some will take high-speed services from other providers using alternative

infrastructures, such as cable, satellite or wireless. Similarly, existing subscribers to these alternative technologies may churn back to ADSL wireline services as prices fall. As non-ADSL networks are not explicitly modelled, this effect is accounted for by a percentage net churn of potential ADSL subscribers each year to non-ADSL services. This has the effect of further reducing the potential subscribers available to TCNZ and the entrant(s).

Having combined all these adjustments, the model produces an estimated proportion of the total technically feasible number of lines that are likely to take ADSL services in each ESA every year. This is split between business and residential subscribers, and, in each case, is allocated between TCNZ and the entrant(s) in each year. The apportionment mechanism takes into account two assumptions:

- when LLU is introduced, there is a net churn to the entrant(s) from TCNZ's installed base of subscribers in those exchanges that it has upgraded;
- new subscribers (ie, those that do not take DSL at the beginning of the year, but are projected to take it up during the year) are apportioned between TCNZ and the entrant(s) on the basis of a competitive market-share rate.

### 2.3.3 Commercial viability

An entrant's decision to enter the market is determined on the basis of whether it is a commercial proposition—ie, whether it is likely to be profitable. Therefore, in modelling the impact of LLU, it is necessary to replicate this decision process. The model does this through a net present value (NPV) calculation of the costs and benefits to the entrant, for each ESA. If the NPV of entry is positive, it is assumed that entry will occur; if negative, there will be no entry. The discount rate for the NPV calculation is the appropriate cost of capital, thus ensuring that the entrant can make an adequate return.

The inputs to the NPV are the costs/revenues that the entrant will incur/receive. The costs are broken down into sub-categories covering: the one-off costs of setting up the LLU regime; the one-off costs of unbundling a particular line, which arise when a customer is first connected; and the fixed and variable charges of supplying a customer each year.

Revenues are based on the prevailing price level in any particular year, and comprise a fixed connection charge for each new subscriber and a monthly fee for the service.<sup>13</sup>

In theory, there could be a valuable option for the entrant to delay its investment in order to enter the market, as discussed by Dixit and Pindyck.<sup>14</sup> However there are a number of reasons for considering that the actual option value would not, in practice, be significant:

• the option to defer is not a free option, in that other firms could exploit (and, in the case of TCNZ, already are) the opportunity to which the option relates. Other

<sup>&</sup>lt;sup>13</sup> As the model operates on an annual basis, the monthly fee is aggregated up to the annual level through a simple sum; there are no within-year discount factors.

<sup>&</sup>lt;sup>14</sup> Dixit, A. and Pindyck, R. (1994), *Investment Under Uncertainty*, Princeton University Press.

firms could enter as unbundled entrants, which could reduce or remove the opportunity for the delaying firm to enter in the future. Moreover, TCNZ is currently developing its broadband proposition and increasing its installed base of customers. All these developments will significantly reduce the expected revenue stream following a delay;

- the option will have a finite and relatively short lifetime, as it would become considerably more difficult for the entrant to compete with TCNZ after even two years, due to TCNZ's first-mover advantage. At present, as broadband services are only just beginning to develop, an opportunity exists for entrants, although this will not remain the case for long; and
- the actual quantum of sunk costs incurred by the entrant will be small relative to the other assets owned by the entrant and employed at the local exchange level over the lifetime of the project—the only costs likely to be deemed to be sunk will be the collocation set-up costs, as other investments (eg, backhaul links) could be used for other purposes;

Overall, therefore, if the actual option value were to be calculated, it is unlikely to be substantial, and any premium on the weighted average cost of capital (WACC) would be insignificant. As a result, this issue is not considered any further in the analysis.

The NPV function in the model multiplies these costs and revenues by the relevant number of subscribers, and calculates the resulting NPV, were entry to occur. This is carried out twice for each scenario to allow for differing levels of entry that reflect different prices. It is assumed that the maximum number of entrants in any ESA will be two, and that, if two firms enter, the competitive price will be achieved.

The first entry cycle calculates the NPV with only one entrant, and therefore assumes that the market price will be above the fully competitive level. If this NPV calculation is positive, at least one entrant would offer services. The second cycle does the same for two entrants at the competitive price level. If the second cycle is positive, two-firm entry is predicted.

Therefore, the result of the NPV calculation is that the model predicts the ESAs in which one firm, two firms or no firms will enter.

### 2.4 Retail price effects following entry

The relevant retail price is the price that consumers must pay to use broadband services. Given that broadband is of little use to residential customers without an Internet service provider (ISP) for Internet access and e-mail, the price should include ISP costs. Furthermore, most, if not all, businesses also access the Internet, and so would also need an ISP. The broadband connection may be used for other forms of data transfer, but these firms would still incur an ISP charge, which comprises a monthly access charge payable to the local telecommunications access provider (currently only TCNZ), plus a monthly charge payable to the ISP. The only exception to this is the fixed PDN service that is modelled as a composite of Frame Relay and Digital Data Services (DDS) distributing data between branches of a particular firm.

The counterfactual prices generated for the representative products form the 2005 prices in the model. In the options the prices gradually fall over five years to reach the required level, either  $P_1$  or  $P_2$ —ie, there is a price glide path that determines the actual price faced

by consumers in any particular year. Thus, the full price reductions predicted by the model are applied over time.

The primary benefit to consumers from LLU is likely to be an increase in competition in the provision of services over the local loop. This should reduce the price of existing services and increase the diversity of new services offered. As discussed, the latter is a feature of dynamic efficiency, and the consequent benefits have not been quantified in the modelling.

The effects of the price changes in the model are twofold: they produce a benefit for those consumers that already take broadband, and they result in higher take-up of services by consumers through the penetration rate. This latter effect is produced by the application of a price-elasticity factor combined with the price reduction.

Price benefits result from greater competitive pressure on TCNZ and on all firms providing retail services to consumers. If the current (pre-LLU) price is not at the most efficient level, because of either allocative inefficiency (excess profitability) or productive inefficiency (producing at a cost greater than that indicated by the efficiency frontier), competition should help to reduce price. This will result from either an erosion of margin—and hence increased allocative efficiency—or a reduction in excess production costs.

As noted, the assumption is that the optimum competitive price level is only obtained when there are two entrants, resulting in three competing companies in the market. It is also assumed that the price fall will not materialise in the first year, but will be spread over five years. This produces a glide path for prices as they gradually fall, reaching the final competitive price (100% of the price reduction) in year 5.

If there is only one entrant, it is unlikely that the market will be fully competitive; the price is therefore assumed to be between the current price and the fully competitive level. Again, the price falls over time, reaching its final level after five years. Section 5 details the prices used and how they were derived.

The price impacts have been modelled on a de-averaged basis, with the minimum level of price formation being the ESA. Although TCNZ could, in principle, set different prices by individual customer, even for residential consumers, it generally uses a higher level of aggregation as a basis for setting prices. The assumption in the model is that this level is the ESA, which appears to be broadly consistent with TCNZ's current practice.

It is also assumed that the effects of competition are restricted to the ESA within which competition arises, rather than there being spillover effects into contiguous ESAs, or even across the whole country. If competition stimulated by unbundling were deemed to have a general effect, leading to a fall in prices in all ESAs, there would be considerably greater welfare effects. To this extent, the model is conservative and will estimate a lower level of benefit from unbundling than would be the case if stronger assumptions were used.

### 2.5 Market outcome in the absence of entry

At present, TCNZ has no obligation to set an average, or standard, price across New Zealand; it is able to price in response to entry in a very localised manner. The model therefore assumes that any price benefits arising from the introduction of LLU are limited

to those exchanges where entry occurs; all others remain with the TCNZ price forecast for the period. This is a conservative assumption because there may be an effect of general competitive pressure in the market that forces TCNZ to lower its prices across all, or a substantial number of, its exchanges. If this were the case, many more subscribers would be affected, and the benefits resulting from LLU would be correspondingly greater.

Even without entry, it is assumed that there will be a general reduction in retail prices over time, as a result of technological developments leading to cost reductions, and that the impact of the Commission's wholesale decision will place some competitive pressure on prices. In other words, in the counterfactual (as well as Options 1, 2 and 3), prices fall by 5% over the five-year modelled period. In Option 4 (unbundling of the fixed PDN), prices fall by 3% over the period. This is a variation from the draft model where the counterfactual (and implicitly the prices in the options) were assumed to be static in real terms.

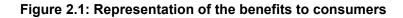
Telecommunications technological innovation, in particular, may be reducing the underlying input prices for firms at a faster rate than 5% (or 3%) over five years. However, the important aspect for consumers is the extent to which these benefits are passed on in the form of lower prices. As noted, even with the effects of the wholesale determination, it is likely that, absent unbundling, TCNZ will face only limited price pressure across most of New Zealand in the foreseeable future. Accordingly, a 5% (or 3%) reduction in prices would appear reasonable.

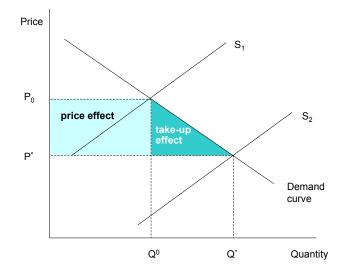
### 2.6 Valuing consumer benefits

Having identified all the relevant components of the likely market development over the relevant period, the consumer benefits arising from LLU can be calculated. As noted, these benefits take two main forms:

- **price effects** that arise for existing subscribers as a result of the regulatory options. These are straightforward to calculate as they represent the difference between the option and counterfactual prices; and
- expansion of the market through lower prices and increased availability of services in areas where the exchange was not previously upgraded. All subscribers benefiting from the increased availability of services do not gain a price benefit (as they did not previously pay the higher price), but they do gain an increase in their consumer surplus by receiving services they did not previously have. This **take-up effect** is the difference between their willingness to pay and the amount they actually paid for their broadband services.

Figure 2.1 illustrates these two benefits in a relatively simple framework.  $P_0$  is the price in the counterfactual (ie, with no regulatory intervention);  $P^*$  is a representative (lower)


price, following regulation.<sup>15</sup> Q<sub>0</sub> is the number of subscribers in the counterfactual (ie, with no regulatory intervention); Q\* represents the (increased) number of subscribers following intervention.


The price effects enjoyed by the existing installed base are represented by the rectangle. Mathematically, this area is equal to:

 $(P_0 - P^*) * Q_0$ 

The take-up effect is represented by the triangle. Mathematically, this area is equal to:<sup>16</sup>

 $(P_0 - P^*) * (O^* - O_0) * 0.5$ 





Note: This figure is purely illustrative. It is not drawn to scale, and should not be taken to represent the actual results.

The effects of unbundling have been modelled in a comparative static framework ie, many of the key market characteristics have been maintained as stable, particularly the product set being offered. Other than market entry (with its consequent efficiency effects on price), the only other parameter that varies in the final version of the model is the underlying cost structure. This is assumed to drop such that prices fall by 5% in both the counterfactual and the options.<sup>17</sup> This feature was not incorporated in the draft version of

<sup>&</sup>lt;sup>15</sup> This figure is purely illustrative. It is not drawn to scale, and should not be taken to represent the actual results.

<sup>&</sup>lt;sup>16</sup> This calculation is an approximation, since the actual size of the triangle would depend on the shape of the demand curve, which has not been explicitly estimated. <sup>17</sup> In Option 4 (unbundling the fixed PDN), this figure is 3%.

the model, but the Commission requested that this change be implemented for the final version of the model. The impact of this change is to shift the supply curve outwards in both the counterfactual and options (for simplicity this is not shown on the figure above).

The analysis uses a standard or Marshallian demand curve (also known as an 'uncompensated' demand curve).<sup>18</sup> It shows the relationship between the price of a good and the quantity purchased, taking into account the fact that the utility derived by an individual from a purchase increases as the price falls. The Marshallian demand curve reflects what is likely to occur in reality.

A compensated demand curve, on the other hand, is constructed to keep the individual's *real* income (or utility) constant as the price of the good changes. For example, as the price of the good falls, the individual's nominal income is effectively reduced to prevent any increase in utility. The opposite would be true of an increase in the price of the good. In both instances, the effects of the price change on purchasing power are 'compensated' to keep the level of real income or utility constant. In general, a compensated demand curve is less responsive (ie, less elastic) to price changes than an uncompensated demand curve.

The choice of which type of curve to use depends on the objective of the work and information available. For empirical work, uncompensated demand curves are often used, as the price and demand data needed is most readily available. For some theoretical work, compensated demand curves may be the most appropriate choice, particularly when measuring the welfare effects of a price change. However, the location of the compensated demand curve depends on the target level of utility assumed—should it be the level of utility before or after the price change? This choice will affect the size of the welfare change (ie, the consumer surplus measure).

Fortunately, the Marshallian (uncompensated) demand curve is a good compromise between the two compensated curves, as it falls between them. Moreover, information in the Marshallian curve is more likely to be available from actual market data. Furthermore, where the price changes are small, the difference between the three curves would also be small.

As noted in section 2.1, a further form of benefit arises from the increased bundle of services (the dynamic benefits). Such changes to the products supplied would produce an entirely new demand curve that reflects the underlying demand for the components of the new product bundle. It is likely that this new demand curve would have a different position to the demand curve for the simple data product shown in Figure 2.1, and would probably have a different slope.

<sup>&</sup>lt;sup>18</sup> The following discussion draws heavily from Nicholson, W. (1994), *Microeconomic Theory—Basic Principles and extensions*, The Dryden Press.

The benefit from unbundling would depend on the extent to which the new services would not otherwise have been supplied (ie, without unbundling). For example, if the services are delivered solely as a result of innovation from unbundling entrants, the full consumer surplus benefit could be accorded to the relevant unbundling option. More likely, however, is that the new services would have been provided to consumers, but unbundling speeds their introduction and lowers their price(s).

While it is possible to outline the theoretical approach to determining the dynamic benefits of unbundling, the practical estimation is complex without consumer surveys and econometric estimations of consumers' valuation of the different services that become available. As none of these was readily available, the dynamic benefits have not been estimated.

## 3. Results

As noted in section 1, the focus of this CBA is the potential gains to consumers from regulatory action—either specification or designation. Therefore, the only gains that are relevant are those that are incremental, as a result of regulatory intervention. As described in section 2, the benefit (or loss) that is due to regulatory action is calculated by comparing welfare gains with the outcomes in the counterfactual.

Potential gains to consumers are reflected in a choice of services from more operators at lower prices. As discussed in section 2, in economic terms, these are proxied by measuring the welfare gains to consumers that result from two effects:

- the **price effect**, where existing consumers benefit from a reduction in the retail price;
- the **take-up effect**, where the price falls lead to an expansion in take-up.

Together, these constitute consumer surplus.

Table 3.1 reports the consumer surplus gains over the base case that result in each scenario using the central case assumptions detailed in section 5, many of which can be varied. A sensitivity analysis for certain variables is set out in section 3.1.

| Option                    |                 | Specification     | า     |                 | Designation       |       |
|---------------------------|-----------------|-------------------|-------|-----------------|-------------------|-------|
|                           | Price<br>effect | Take-up<br>effect | Total | Price<br>effect | Take-up<br>effect | Total |
| 1: Full LLU               | 0.4             | 0.5               | 0.9   | 49.1            | 34.7              | 83.8  |
| 2: Line sharing           | 5.3             | 0.3               | 5.6   | 81.0            | 32.3              | 113.3 |
| 3: Bitstream              | 12.8            | 1.0               | 13.9  | 121.8           | 49.0              | 170.8 |
| 4: Fixed PDN <sup>1</sup> | 55.1            | -                 | 55.1  | 232.4           | _                 | 232.4 |

Table 3.1: Present value of consumer surplus, 2005–09 (NZ\$m)—base case

*Note*: <sup>1</sup> The take-up effect for the fixed PDN is zero because it is assumed that new demand cannot be stimulated by the entrant, and that all existing data tails are being used when unbundling occurs. Therefore, the entrant only gains by churning customers from TCNZ, and no new subscribers join as a result of unbundling.

The results show that there is a positive gain to consumers from regulation in all options and scenarios, although, in designation, where the gains are greatest due to larger price falls (see Tables 3.2 and 3.3), these are more heavily skewed towards business than residential customers.

The ordering of benefits from the unbundling scenarios is consistent between the four options (designation always generates greater benefits than specification).

The higher benefits from bitstream access (Option 3) compared with Option 2 reflect the fact that there is a lower total cost of providing the unbundled service, because collocation costs are avoided. In addition, entrants face a lower risk of investing in network components (eg, DSLAMs) that might not be fully utilised. This option is consequently more attractive, entry occurs at more exchanges and hence the market expands more.

Overall, the model predicts the highest benefits for unbundling under bitstream where prices move closer to costs as a result of regulation (excluding the specialised services offered by the fixed PDN). The other forms of access also show significant benefits. There are substantial gains to existing customers of the fixed PDN following the liberalisation of this service.

Tables 3.2 and 3.3 report the price falls that underpin each scenario, split between business and residential. Table 3.2 reports the decline from  $P_0$  to  $P_1$ , and Table 3.3 from  $P_0$  to  $P_2$ . (These price declines are from a starting year  $P_0$  to a year 5  $P_2$ , both of which exclude the additional price drop due to cost pressure and the wholesale decision).

| Option          | Specifi     | cation   | Designation |          |  |
|-----------------|-------------|----------|-------------|----------|--|
|                 | Residential | Business | Residential | Business |  |
| 1: Full         | -17         | -4       | -25         | -48      |  |
| 2: Line sharing | -22         | -1       | -25         | -53      |  |
| 3: Bitstream    | -22         | -1       | -27         | -54      |  |
| 4: Fixed PDN    |             | -7       |             | -30      |  |

Table 3.2: Retail price falls (P<sub>0</sub> to P<sub>1</sub>) over the CBA, as a result of unbundling (%)

| Option          | Specifi     | cation   | Designation |          |  |
|-----------------|-------------|----------|-------------|----------|--|
|                 | Residential | Business | Residential | Business |  |
| 1: Full         | -24         | -12      | -31         | -52      |  |
| 2: Line sharing | -28         | -9       | -31         | -56      |  |
| 3: Bitstream    | -28         | -9       | -32         | -56      |  |
| 4: Fixed PDN    |             | -16      |             | -36      |  |

# Table 3.3: Retail price falls ( $P_0$ to $P_2$ ) over the CBA, as a result of unbundling (%)

The welfare gains shown in Table 3.1 are derived from the price reductions over the counterfactual that result in lower prices to existing customers and an increase in the DSL subscriber base. The price changes come about as a result of competitive pressure from unbundling. The results are therefore sensitive to both the assumptions underlying the relevant costs and revenues and those used to predict take-up. Overall, the assumed retail price falls, even under designation, do not look out of line with observed outcomes in other jurisdictions.

Any regulatory intervention would be concerned with the level of wholesale access charges, but the difference in benefits between the specification and designation scenarios (resulting from the different price reductions) is driven by the assumptions on the way in which the *retail* prices are derived, and the ensuing entry decisions. In specification, they are set using a top-down approach, while, in designation, they are determined using a cost-based approach. The latter approach may result in lower retail prices, driving the higher welfare benefits.

Wholesale access prices are implicitly included in the specified prices, and explicitly included in the bottom-up approach to the designated prices. The difference in wholesale prices between specification and designation depends on the relative strength of the

|O|X|E|R|A|

bargaining position of entrants under specification. It may be argued that marked differences could not persist between the negotiated outcome for wholesale prices under specification and cost-based wholesale access prices under designation—any initial differences would be eroded by entrants threatening to ask the Commission to designate the service. However, a conservative approach has been adopted here that yields differences between prices in specification and designation, and could thus understate benefits in specification.

The number of additional subscribers taking data services in Options 1 to 3 is shown in Table 3.4. For both residential and business customers, the greatest number of customers is gained in Option 3 (bitstream), in specification as well as designation.

| Option          | Specific    | ation    | Designation |          |  |
|-----------------|-------------|----------|-------------|----------|--|
|                 | Residential | Business | Residential | Business |  |
| 1: Full         | 2,771       | 2,467    | 7,360       | 29,585   |  |
| 2: Line sharing | 5,573       | 2,585    | 8,576       | 44,295   |  |
| 3: Bitstream    | 14,965      | 5,916    | 18,397      | 64,798   |  |

#### Table 3.4: Number of customers gained at 2009 as a result of unbundling

Source: OXERA calculations.

As the costs and benefits modelled are either financial, or have been converted to a financial measure, there are certain aspects of LLU that have not been taken into account. For example, experience around the world suggests that collocation is difficult to organise, even with regulatory intervention. Such problems are likely to increase the difficulty of entry and thereby limit the number of successful entrants. These costs have not been modelled, but would suggest that entry under full unbundling or line sharing may be delayed compared with bitstream services.

To place the results in Table 3.1 into context, a range of prices has been developed by altering two key assumptions in the price-determination process. This generates a lowand a high-price scenario, which produce welfare estimates that provide a range around those in the central case (Table 3.1). These estimates do not present a formal statistical range of welfare benefits, such as a confidence interval; rather, they illustrate the range of welfare benefits that is likely to result from altering a number of parameters central to price formation in the scenarios.

The altered parameters (see Table 3.5 below) were, for specification, the OSS costs and the profitability and efficiency estimates for specification, and, for designation, the OSS costs and the number of lines across which fixed and set-up costs are spread. One case is termed the 'low case' because it produced high prices and thus presents a lower-range estimate of welfare benefits, while the other, 'high case', has low prices and thus sets an upper-range estimate of welfare benefits.

|                 | Low case (high prices) | High case (low prices) |
|-----------------|------------------------|------------------------|
| Specification   |                        |                        |
| OSS (\$/line)   | 18.4                   | 0                      |
| Profitability   | 2.5%                   | 7.5%                   |
| Efficiency      | 1.25%                  | 3.75%                  |
| Designation     |                        |                        |
| OSS (\$/line)   | 18.4                   | 0                      |
| Number of lines | 500                    | 2,000                  |

The results for specification show that the low case (high prices) results in negative welfare benefits from all the options except the fixed PDN. This is a result of  $P_1$  being above  $P_0$  in some cases, especially for residential services and business and residential voice services in Option 1. However, as voice subscribers are not subject to the elasticity effects of price shifts (because it is assumed that this is an essential service), the revenues from the combined data and voice services are sufficient to drive entry in Option 1. In the other options the higher prices generate more revenues for the entrants, albeit from fewer customers than in the central case, which are sufficient for entry.

In the high case (low price), there is a trade-off between a lower price that stimulates additional demand and the lower per-customer revenues gained by the entrant. The results indicate that the market-expansion effect dominates and there is more market entry, which, combined with greater welfare gains per consumer (due to the lower prices), produces more benefits than the central case.

| Option          | Spec         | ification—low     | case   | Specification—high case |                   |       |
|-----------------|--------------|-------------------|--------|-------------------------|-------------------|-------|
|                 | Price effect | Take-up<br>effect | Total  | Price effect            | Take-up<br>effect | Total |
| 1: Full         | (91.7)       | 0.1               | (91.5) | 63.0                    | 2.1               | 65.1  |
| 2: Line sharing | (9.0)        | 0.3               | (8.7)  | 23.9                    | 3.2               | 27.2  |
| 3: Bitstream    | (15.9)       | 0.2               | (15.7) | 43.3                    | 6.7               | 50.1  |
| 4: Fixed PDN    | 9.2          |                   | 9.2    | 103.4                   |                   | 103.4 |

| Table 3.6: Present value of consumer surplus, 2005–09 (NZ\$m)— |
|----------------------------------------------------------------|
| range under specification                                      |

For the designation scenario, as expected, the low case (high prices) results in lower welfare benefits for Options 2 to 4, and the high case produces increased benefits. However, this does not appear to be the case for Option 1, where there are considerably lower benefits in the low case, but with significantly higher take-up benefits than the central case. In the high case there are greater benefits across the board.

As was noted for specification, these results are generated by the impact of voice subscribers. For the low case, the designated voice-only prices ( $P_1$  and  $P_2$ ) are above  $P_0$ , with the exception of  $P_2$  for business. The additional revenue provided by these inelastic voice-only subscribers supports the unbundling of considerably more exchanges. As a result, more new data and voice subscribers take services (hence the higher take-up effect benefits), but all voice-only subscribers (including those of TCNZ that are charged the

same higher prices) suffer a welfare loss. This latter effect outweighs the positive take-up benefits, and results in the substantial welfare loss.

| Option          | Designation—low case |                   |        | Designation—high case |                   |       |
|-----------------|----------------------|-------------------|--------|-----------------------|-------------------|-------|
|                 | Price effect         | Take-up<br>effect | Total  | Price effect          | Take-up<br>effect | Total |
| 1: Full         | (89.6)               | 47.1              | (42.5) | 114.8                 | 32.2              | 147.0 |
| 2: Line sharing | 65.8                 | 24.1              | 89.9   | 89.1                  | 37.8              | 126.9 |
| 3: Bitstream    | 105.3                | 40.4              | 145.7  | 135.1                 | 55.9              | 191.0 |
| 4: Fixed PDN    | 144.2                |                   | 144.2  | 312.0                 |                   | 312.0 |

#### Table 3.7: Present value of consumer surplus, 2005–09 (NZ\$m) range under designation

In the high case for Option 1 there are fewer ESAs being unbundled as a result of the lower revenues per subscriber (hence the reduction in the take-up effect), but the welfare benefits per subscriber are higher, also because of the lower prices. Overall, this results in greater welfare benefits.

The ranges illustrate the variability of the welfare outcomes around the prices used in the model. With the exception of Option 1, the model does not appear oversensitive to changes in these prices. However, voice services have a considerable impact on the welfare outcomes in Option 1.

### 3.1 Sensitivity analysis

As the model has been constructed to allow the key variables to be adjusted in each case, there are many potential sensitivity analyses that could be run. For this analysis, four sensitivities to the central case have been selected for the options:

- Sensitivity 1 the WACC is set at 13%.
- Sensitivity 2 the elasticity has been set to -1 (down from -1.5);
- Sensitivity 3 the cut-off limit for feasible ADSL connections is reduced from 7km to 4km;
- Sensitivity 4 the base case is re-run with high OSS costs included.

Sensitivities 2 and 3 are not relevant to the modelling of the unbundling of the fixed PDN. The results from these sensitivities are presented in Tables 3.8 to 3.11.

#### Table 3.8: Present value of consumer surplus, 2005–09 (NZ\$m)— Sensitivity 1: WACC set to 13% (18% in central case)

| Option          | Specification |                   |       | Designation  |                   |       |
|-----------------|---------------|-------------------|-------|--------------|-------------------|-------|
|                 | Price effect  | Take-up<br>effect | Total | Price effect | Take-up<br>effect | Total |
| 1: Full         | (2.0)         | 0.7               | (1.3) | 66.7         | 46.4              | 113.1 |
| 2: Line sharing | 6.4           | 0.4               | 6.8   | 92.2         | 36.7              | 128.9 |
| 3: Bitstream    | 12.9          | 1.0               | 13.9  | 126.5        | 50.7              | 177.2 |
| 4: Fixed PDN    | 57.1          |                   | 57.1  | 235.7        |                   | 235.7 |

Lowering the WACC has the effect of making entry more likely, and this is reflected in Options 2–4 by increased consumer welfare benefits. This is also the case in Option 1 for specification, but the ESAs that are unbundled have negative net welfare benefits as a result of  $P_1$  being greater than  $P_0$ . Hence, the net outcome is a reduction in welfare compared with the central case.

| Option          |                 | Specification     | ı     |                 | Designation       |       |
|-----------------|-----------------|-------------------|-------|-----------------|-------------------|-------|
|                 | Price<br>effect | Take-up<br>effect | Total | Price<br>effect | Take-up<br>effect | Total |
| 1: Full         | 0.3             | 0.4               | 0.7   | 47.7            | 22.0              | 69.7  |
| 2: Line sharing | 5.3             | 0.2               | 5.5   | 57.2            | 15.3              | 72.5  |
| 3: Bitstream    | 12.6            | 0.7               | 13.3  | 108.6           | 28.8              | 137.4 |

Table 3.9: Present value of consumer surplus, 2005–09 (NZ\$m)— Sensitivity 2: elasticity set to -1 (-1.5 in central case)

Reducing the elasticity lowers the number of new subscribers that take broadband services following the price falls, and thus has a most marked impact on the take-up effect component of the welfare calculation. However, the reduction in revenue generated from new subscribers has a knock-on effect on the viability of entry; this results in fewer ESAs being unbundled, and hence lower benefits overall.

Table 3.10: Present value of consumer surplus, 2005–09 (NZ\$m)— Sensitivity 3: feasible ADSL connection distance set to 4km (7km in central case)

| Option          |                 | Specification     |       |                 | Designation       |       |
|-----------------|-----------------|-------------------|-------|-----------------|-------------------|-------|
|                 | Price<br>effect | Take-up<br>effect | Total | Price<br>effect | Take-up<br>effect | Total |
| 1: Full         | 0.9             | 0.5               | 1.4   | 43.5            | 31.4              | 74.9  |
| 2: Line sharing | 5.1             | 0.3               | 5.4   | 69.8            | 27.9              | 97.8  |
| 3: Bitstream    | 11.3            | 0.9               | 12.2  | 110.3           | 44.3              | 154.6 |

If the feasible distance for ADSL connections is reduced, the number of customers that can be served falls. As expected, this results in lower benefits across all the options.

Table 3.11: Present value of consumer surplus, 2005–09 (NZ\$m)— Sensitivity 4: OSS costs set to 'high'

| Option          | Specification |                   |        | Designation  |                   |       |  |
|-----------------|---------------|-------------------|--------|--------------|-------------------|-------|--|
|                 | Price effect  | Take-up<br>effect | Total  | Price effect | Take-up<br>effect | Total |  |
| 1: Full         | (27.7)        | 0.4               | (27.3) | 12.0         | 37.2              | 49.2  |  |
| 2: Line sharing | (1.0)         | (0.03)            | (1.0)  | 75.7         | 30.0              | 105.7 |  |
| 3: Bitstream    | 0.6           | (0.06)            | 0.5    | 117.5        | 46.8              | 164.4 |  |
| 4: Fixed PDN    | 52.2          |                   | 52.2   | 223.1        |                   | 223.1 |  |

Increasing the costs of OSS results in higher prices, which generate lower welfare benefits in all the options and scenarios. As noted, the voice revenues are driving the results. The increased prices for voice-only customers stimulate an increased number of ESAs to be unbundled, but the unbundled voice prices are higher than  $P_0$ , resulting in a

net welfare loss to all voice-only customers (including those of TCNZ). This, in turn, exceeds the positive benefits from lower data prices and generates much lower (negative) overall welfare benefits than in the central case.

The increase in voice revenues in designation, producing more unbundled ESAs, is also the cause of the increase in the take-up effect benefits in designation for Option 1. Again, the negative welfare benefits from voice reduce the positive benefits on the data side, which produces a lower welfare benefit overall, despite the greater level of market entry.

### 4. Model Structure

This section presents the structure of the model, and details how it determines the various outputs required to model the impact of regulation in the four options. Data used to populate the model is presented in section 5.

The only difference between the specification and designation cases is that, for designation, the wholesale access prices for unbundling may be set by the Commission (ie, they are regulated), should a determination be requested. There is no difference in the *structure* of the model between these two scenarios; the only changes are in the input costs and price data.

Furthermore, the components of full unbundling are data and voice services, while line sharing involves the provision of data only. Therefore, there is a high degree of commonality between these options on the data side. The primary difference is in the entry decision; for full unbundling, the entrant takes into account the costs and revenues of both data and voice (exploiting any economies of scope that exist), while, for line sharing, there are costs and revenue from data services only.

In the following sub-sections, the model approach outlined with regard to the data applies equally to full unbundling and line sharing. The NPV assessment of the entry decision and the consumer welfare calculations are addressed separately.

## 4.1 Counterfactual

The counterfactual sets out what might be expected to happen if LLU were not introduced. As noted, rather than the forecast that was used in the draft report, the final model formulation is designed so that the counterfactual approximates TCNZ's forecast of broadband take-up.

The importance of the counterfactual is that it provides the base case against which to measure the incremental benefits of LLU. All benefits accruing to subscribers are measured relative to the counterfactual, and, from an economics perspective, only those benefits over and above what would have occurred in the base case are important. Since the benefits forecast to accrue to consumers are measured by price reductions, the only difference between the counterfactual and each scenario is the effect of any price changes that result from regulatory intervention. These price reductions drive the take-up of services. In other words, the number of subscribers in the counterfactual is forecast using the same methodology as take-up in Options 1–3, minus the elasticity effect of the price change (as described in section 2.3.2).

There are two services in the counterfactual—data and voice—each provided to business and residential customers. The method by which the counterfactual numbers in the model are derived is outlined below.

### 4.1.1 Business and residential

TCNZ provided data on the current number of lines on an ESA basis, split between business and residential. It also provided data on the number of working ADSL ports, which were allocated to business and residential customers using the same proportion as the split for the lines.

### 4.1.2 Data subscribers

The number of data subscribers in the counterfactual was generated using the same methodology as described in section 2.3.2, with the parameters adjusted so that the predicted number of business subscribers approximated TCNZ's forecast profile.

### 4.1.3 Voice subscribers

As New Zealand already has a high level of voice telephony penetration, it was assumed that 100% of the lines detailed by TCNZ were used to provide voice services (excluding those used for non-PSTN services). Furthermore, given the existing high penetration level, it was assumed that there would be no further growth in the number of voice lines. This is a conservative assumption, as it is likely that new house-building and the growth of multiple lines for residential customers will increase the number of voice lines over the period.

### 4.1.4 Prices

It was assumed that prices would fall by 5% as a result of technological developments and the impact of the wholesale determination, leading to cost reductions for both voice and data services over the period of analysis. This applies to the data and voice monthly line-rental and service charges. The connection charges are held constant (in real terms over the period).

Data prices include the cost of the ISP for both business and residential customers since this is a real cost that the consumer must face, as discussed in section 2.4.<sup>19</sup>

### 4.2 DSL data unbundling

### 4.2.1 Business and residential customers

Business and residential customers on DSL data or bitstream services are served from the same ESA using the same equipment (eg, DSLAMs). There is no dedicated business or residential capacity other than the specific line running to the customer premises. Therefore, equipment resulting from an investment in upgrading an exchange can be used for either business or residential services, and the likely demand from both would be taken into account in making the unbundling decision.

As a result, the number of likely customers for each market segment must be calculated separately, but both should be included when assessing the entry decision. As the process for determining the likely take-up is the same for both groups, it is not explained separately below. However, the distinct business and residential data inputs are detailed in section 5.

<sup>&</sup>lt;sup>19</sup> The new entrant may or may not provide ISP services itself (on an arm's-length basis). However, the cost will always form part of the consumption decision from the consumer's perspective (regardless of whether they are business or residential).

### 4.2.2 Technically upgradeable lines

The number of technically upgradeable lines is the starting point for the model, as an indication of the potential size of the market. As noted, the number of lines in each ESA that can be upgraded to DSL services will be reduced owing to certain technical constraints, including:

- distance from the exchange;
- transport technology (eg, PCM);
- existence of sub-loops;
- interference.

In practice, it was difficult to ascertain independently the coincidence of these factors without detailed and exhaustive engineering analysis of TCNZ's network. For example, some lines that are outside the requisite distance from the exchange may also be on a sub-loop or served by a PCM transport cable. Therefore, to apply these factors successively would understate the number of DSL-upgradeable lines.

As an alternative, OXERA obtained TCNZ's estimates of the number of upgradeable lines per ESA that it has used for its own engineering purposes. This information forms the basis for the number of lines available to entrants.

### 4.2.3 Price-determination mechanism

Section 2 discussed the likely impact of LLU on the price of voice and data services in New Zealand. In the ESAs in which entry occurs, it is assumed that there will be a price reduction, the extent of which depends on whether one or two firms enter.

For data services, under the specification scenario, there will be a negotiation between TCNZ and the entrant in order to determine the appropriate wholesale prices for unbundling; while, for designation, this will be established by the Commission if a party applies for a determination. The prices used in the model have therefore been developed on different bases for these two scenarios.

The objective in constructing the one- and two-entrant prices is to establish an approximate level for the prices in each scenario. In particular under designation, where a bottom-up approach is adopted, the intention is not to construct a precise cost-based price, such as a long-run incremental cost (LRIC) price. Rather, the aim is to estimate the market prices following unbundling. To this extent the price construction methodology adopted in specification and designation (top-down and bottom-up respectively) is merely a process to provide an indication of the level of the prices.

To this extent, it is not necessary to be precise in the construction of the bottom-up price in particular, as would be the case in generating a LRIC price. Provided the estimates used are reasonable, the resulting price will be a close approximation of the postregulation price. As a result, it is not necessary to consider including within the price elements such as an explicit return on capital; the issue of the recovery of such costs is dealt with through the NPV calculation that drives the entry decision (as discussed below).

### Specification

The prices under the specification scenario are the result of a top-down approach. The current TCNZ weighted average price for data services, including the ISP charge, is

calculated as the starting point (the base price).<sup>20</sup> It is then assumed that, as a result of entry, TCNZ will be forced to become more productively efficient, and to lower its profit level.<sup>21</sup> This results in a profit and efficiency reduction to the base price. In addition, certain costs of LLU are incurred by both TCNZ and the entrant(s); namely the set-up of TCNZ's information systems and the regulatory costs of submissions.<sup>22</sup> As these are common to both TCNZ and the entrant(s), it is assumed that they will be recovered from consumers and are added back into the price.

The result of these adjustments is a retail price that is likely to decrease over time under full competition (two entrants). It is assumed that the full price adjustment does not occur in the first year, so a glide path is used, with the end price reached in the final year of modelling-year 5.

Where there is only one entrant, the full benefits of competition are not obtained, and the retail price in this case is assumed to be above the retail price for full competition. In the central case, the one-entrant price is 10% above that for full competition.

#### Designation

For the scenario of designation of wholesale prices by the Commission, a bottom-up approach is used to derive retail prices.

The regulated wholesale prices for Options 1 and 2 (full unbundling and line sharing) were based on recommendations by the Commission's consultants, Covec. The wholesale access charge for Option 3 (bitstream) was assumed to be the same as for line sharing. with an additional allowance for contribution to the cost of TCNZ's DSLAMs. In Option 4 (fixed PDN), a retail-minus-type approach is used to derive the wholesale costs.

The overall retail price for designation was derived by summing the wholesale cost with the other costs of entering the market, which were categorised into fixed costs, the set-up capital costs, and the variable costs per line. The one-off and fixed annual costs had to be converted into a charge per line. This was approximated by amortising the costs on a straight-line basis over a reasonable lifetime (either the asset lifetime or five years for unbundling set-up costs to reflect a likely entrant's time horizon). The costs were then divided by a suitable number of lines to determine the cost per line. The number of lines was determined by considering the average likely number of unbundled lines in the ESAs most likely to be unbundled, namely metro or urban exchanges. Further detail on this process is provided in section 5.

<sup>&</sup>lt;sup>20</sup> The existing prices of the services are weighted by the proportion of subscribers taking each service.

<sup>&</sup>lt;sup>21</sup> The estimate of this reduction in efficiency results from OXERA's efficiency analysis of TCNZ, see the accompanying paper, 'Estimating the Relative Efficiency of Telecom New Zealand'. <sup>22</sup> The costs of regulatory submissions in the specification scenario are assumed to be half those of designation, as

specification does not involve a price determination.

The objective of this process was to approximate the likely price level rather than to determine with accuracy a fully cost-reflective price. As a result, it was not necessary to include either a return on capital for specific assets, or on sales in general.

The removal of the return on sales element of the price (and by corollary from the costs in the NPV calculation) represents a significant change from the draft model. For the final model, the full process of the model was reconsidered, and it was recognised that it was unnecessary to have the return on sales allowance in the price because the entrants' revenues were already discounted by the WACC, hence ensuring that the cost of capital could be met.

As a return on sales measure is a proxy for the cost of capital where capital intensity is low, to incorporate both would result in double-counting of returns. Furthermore, it would artificially raise the post-unbundling prices to levels above where they may actually reside. A simple test of this argument is to consider whether entry occurs in any ESAs—if it does, there must be sufficient revenue for the entrant to cover its cost of capital, and prices have not been set too low.

## 4.2.4 Penetration of high-speed data services

To determine the number of customers that subscribe to high-speed data services, the model requires a measure of penetration which identifies the percentage of customers with upgradeable lines that actually subscribe to DSL. The base level of penetration in the counterfactual is determined by TCNZ's forecast demand, and this penetration is moderated by a price effect. The percentage expected overall price fall for the relevant scenario (derived from the price-determination formula above) is multiplied by an elasticity factor to obtain the adjusted penetration rate.

However, as described in section 2.3.2, it is assumed that neither the price reduction nor the increase in penetration occurs immediately. Instead, consumers' take-up of high-speed data services grows gradually over time as an increasing number of subscribers become used to broadband; this is represented by a take-up profile derived from the TCNZ forecast of future take-up. The take-up rate determines the percentage of the ultimate penetration that is achieved in each year, reaching 100% in the seventh or ninth years following upgrade for residential and business subscribers respectively, producing a level of penetration that applies to each year. The percentage penetration rate is applied to the number of upgradeable subscribers for each year in order to determine the number of subscribers interested in taking broadband services.

A significant number of ESAs have been upgraded already, and more will be upgraded before unbundling is introduced. For these ESAs, the model ascertains the year in which the upgrade took place (or is due to take place), and adjusts the forecast take-up rate to match that used with the correct year following upgrade in the take-up profile. This

ensures that the forecast number of subscribers is appropriate to the circumstances of individual exchanges.

An additional adjustment is made to account for the number of potential subscribers that choose to use alternative technologies. The number of upgradeable lines multiplied by the penetration rate gives the number of subscribers interested in broadband per se, but not necessarily in DSL. Alternative technologies, such as cable or wireless, can also deliver high-speed data products, so the number of potential subscribers is reduced by a percentage to represent the net churn to different infrastructures.<sup>23</sup>

Resulting from these calculations is a forecast number of DSL subscribers for each year. These are split between business and residential users on the basis of the proportion of business and residential customers in 2003.

### 4.2.5 Apportionment of subscribers between TCNZ and entrant(s)

To determine the number of subscribers that a new entrant would gain, it is necessary to apportion the forecast business or residential subscribers between the entrant(s) and TCNZ. This is achieved through the use of churn rates and competition for new subscribers.

The entrant acquires subscribers from TCNZ on the basis of a net churn factor that also takes into account any TCNZ win-back from the entrant.<sup>24</sup> The churn rate is applied to TCNZ's installed base at the end of the previous year to determine the number of subscribers switching to the entrant during that year.

New subscribers are apportioned between TCNZ and the entrant(s) on the basis of a competitive acquisition factor that is weighted towards TCNZ, reflecting its favourable position as the incumbent. In each year the residual of the total forecast subscribers less TCNZ's existing installed base is allocated on the basis of the competitive acquisition factor. Therefore, at the end of each year, TCNZ's number of subscribers for the start of the next year is determined as its subscribers at the start of the year minus those lost through churn to the entrant(s), plus the new subscribers won in competition in the market. Similarly, the entrant's subscribers are the start number plus gains from churn and competition.

### 4.2.6 Economic feasibility test for entry

The entry decision is addressed at the ESA level, and firms decide to enter on the basis of the NPV of the relevant costs and revenues for that ESA. The revenues are a product of the prices detailed above, multiplied by the number of subscribers, where relevant. The costs are a combination of one-off set-up costs per ESA, one-off per-subscriber

<sup>&</sup>lt;sup>23</sup> The use of a net churn figure accounts for the fact that TCNZ and/or the entrant(s) may also gain existing customers back from other technologies in each year.

<sup>&</sup>lt;sup>24</sup> Implicit in this is an assumption that there will be net churn towards the entrant. This reflects what has happened in the course of competition between TCNZ and TelstraClear.

connection costs (incurred as subscribers join), and monthly per-subscriber fees. The costs used in the model, and their derivation, are considered in more detail in section 5.

The discount rate used in the NPV calculation is the relevant WACC. This ensures that the entrant earns an adequate return in order for entry to occur. If the NPV calculation is negative, this implies that the total revenues net of costs would be insufficient to allow the entrant a sufficient return on its investment, and entry would not occur.

In considering the submissions on the draft model, it was clear that the draft model was forcing the entrant to meet a higher profit hurdle than required in order to enter. The inclusion of the WACC as the discount factor on the NPV ensures that the entrant is earning its cost of capital before it enters—if the discounted returns are not sufficient, the NPV calculation will be negative and entry will not occur. It is therefore not necessary to include a return on sales element in the costs required to be covered in the NPV calculation, as this factor (an adequate return for the entrant) has already been taken into account through the discount rate. Accordingly, this has been removed from the cost side of the NPV calculation.

The model runs the entry decision twice in order to determine how many entrants provide unbundled services. The sequential logic is as follows.

- *Will one firm enter*? The model calculates the NPV given the number of subscribers at a price denoted  $P_1$ , using the churn and competitive acquisition rates, and the relevant costs.  $P_1$  is above the fully competitive price.
- *Will two firms enter*? This model run halves the number of subscribers available to each entrant, assuming that they will be shared equally between them, and determines the NPV as before, using a price denoted  $P_2$ , where this is the fully competitive price.

Entry only occurs when the NPV calculated is positive. If only one firm enters, prices are assumed to fall, but not to fully competitive levels. If two firms enter, then full competition would ensue.

The churn rate towards the entrants does not increase as a result of two (or more) firms entering, as compared with the situation with one entrant—ie, between the one- and twoentrant outcomes in the model. This is likely to understate the actual market reaction, as two or more entrants would be likely to stimulate greater aggregate churn than one entrant, and thus this assumption reduces the likelihood of entry in the model as compared with reality.

For line sharing, the entrant supplies only data services, and the above analysis applies exactly. However, it is slightly different for full unbundling. In the full unbundling option, the NPV is determined on the basis of the sum of the revenues from data and voice services, and the costs are those relating to voice and data services provision. These include costs common to data and voice, as well as costs related to the separate provision of the services. It is assumed that the entrant is able to take advantage of any economies of scope between voice and data in providing the unbundled exchange.

# 4.2.7 Consumer welfare calculation

The estimation of consumer welfare is the principal output from the model, and is derived from the modelling process outlined above. As discussed in section 2.6, two main forms of benefit apply to consumers: price effect and take-up effect. The process by which each is calculated in the model is considered below. However, in the welfare context, the definition of 'consumers' is broad, and includes all subscribers to voice and data services affected by changes resulting from unbundling. This implies that the benefits to both business and residential users are taken into account and weighted equally in the consumer welfare calculation. Such an assumption is in accord with the Telecommunications Act, which refers to 'end users' of telecommunications services, which are likely to be both residential and business customers.

The consumer welfare benefit is calculated for each year in each ESA. As noted, where there is no entry, there is assumed to be no welfare benefit, as prices do not change in the central case.

## Price effect

For each ESA, the model predicts the number of subscribers taking data services in each scenario (ie, specification and designation) for the years that are modelled. The counterfactual provides the annual number of subscribers that would have been receiving data services without unbundling. It is this latter group that receives the price benefits.

The extent of the price benefit per subscriber is calculated as the difference between the counterfactual price and the scenario price, given the number of entrants, for the ESA in the relevant year. In the draft model, it was assumed that, where there is only one entrant, TCNZ would not fully meet the entrant's price. However, as detailed above, this assumption has been revised for the final model and TCNZ is assumed to meet the new entrant's price exactly.

## Take-up effect

Those subscribers that would not have taken data services were it not for the price falls gain a welfare benefit equivalent to the difference between their willingness to pay and the price they actually paid. The model calculates this effect by taking the difference between the counterfactual and scenario prices multiplied by the number of affected subscribers, divided by two. While this is a necessarily simplistic estimate, it would underestimate the size of the take-up effect, and is thus a conservative approach. A linear demand curve has been implicitly assumed in making this calculation. However, as detailed in section 2.6, it is anticipated that the results would not have been significantly different had a compensated demand curve been used.

The total consumer surplus from unbundling data services (Option 2) is the sum of the price and take-up effect estimates, while, for Option 1, the welfare benefits of voice unbundling are added to these benefits from data.

# 4.3 Voice unbundling

For the reasons discussed in section 2, it is assumed that voice services are only unbundled when an entrant is offering full unbundling; they do not unbundle in order to provide local calls and access services alone. This sub-section outlines how the model calculates the benefits to consumers from the unbundling of voice in the full unbundling option (Option 1).

## 4.3.1 Number of subscribers

The number of voice subscribers is determined by the number of TCNZ subscribers in 2003. This assumes that there is close to 100% voice penetration, and the number of households or lines does not grow significantly over the period.

It is reasonable to assume that all subscribers with lines take voice services. The assumption of no market growth over the period of analysis is conservative and may understate the benefits to consumers.

## 4.3.2 Price of voice services

The derivation of voice services in the specification scenario is the same as for data services. That is, the existing TCNZ retail price is used as a starting point and adjusted for an improvement in allocative efficiency (reduced profitability), productive efficiency, and an increase in costs due to the common costs of LLU. Furthermore, as with data services, the one-entrant price is assumed to be 10% above the fully competitive price.

In this case, however, it is assumed that there is both a stand-alone voice product and a bundled voice and data product. TCNZ has recently withdrawn its bundled voice and data product, so the bundled price was generated from summing the stand-alone voice and data prices.

There are few wholesale elements that would need to be purchased from TCNZ in order to provide unbundled voice services, and there are economies of scope in the unbundled line-rental charge (with data services). Therefore, it is assumed that there is no difference between the retail prices for unbundled voice services under specification and those under designation.

### 4.3.3 Levels of switching

Given the absence of market or subscriber growth, the only way in which the entrant gains subscribers is by churn from TCNZ. Therefore, a net churn factor is applied to the number of TCNZ subscribers each year to determine the number of subscribers switching to the entrants.

As outlined at the beginning of this section, some subscribers receive voice-only services from an entrant offering full unbundling. This is addressed in the model by estimating the number of subscribers that will switch to voice services, regardless of whether they also take data services. The number of voice-only subscribers can then be calculated as the difference between the total number of voice switchers, and those taking data services. Within the model, however, subscribers to voice services are treated as a single block, separate from data subscribers (except for the entry decision, as discussed below).<sup>25</sup>

<sup>&</sup>lt;sup>25</sup> As a result of this approach, both the prices and costs for data are treated as incremental to the voice revenues and costs in order to ensure that they are not double-counted in the modelling.

## 4.3.4 Entry decision

The process by which the entry decision is modelled is the same as for DSL data unbundling described above. However, as noted in section 4.2.6, the decision to enter for voice services is a joint one with that for data services, and the costs and revenues are pooled in order to determine whether full, unbundled entry is commercially viable.

## 4.3.5 Welfare calculation

As there are no new subscribers, only existing subscribers gain a price benefit. This is calculated as in section 4.2.7, taking the price reduction multiplied by the number of consumers that benefit from it.

This benefit is added to the benefit from unbundled data services subscribers in order to determine the total welfare benefit of full unbundling (Option 1).

# 4.4 Bitstream access

Bitstream access provides a *service*-level entry to DSL data provision. The entrant buys the complete service for a high-speed (eg, 2 Mbps) link to the consumer, and the service includes delivery to the first data switch in TCNZ's network. The entrant would need to arrange backhaul to its own network from this point.

The entrant is therefore bound by TCNZ and its investment plans because the high-speed link will only be available at exchanges that TCNZ has already upgraded. The entrant cannot upgrade an exchange itself through bitstream access.

Bitstream access enables the entrant to provide high-speed data services to residential or business customers, which is the same outcome as DSL data services unbundling, albeit via a different technical solution. Therefore, it is assumed in the model that the retail products and corresponding prices are the same as for DSL data services (specifically those for line sharing, Option 2).

## 4.4.1 Availability of bitstream access

Bitstream services can only be obtained where TCNZ has already upgraded the exchange, so the potential subscribers available to the entrant are limited to those within these exchanges. Once an exchange has been upgraded, TCNZ has indicated that some marginal investment may be required in order to expand the number of DSL lines that can be provided, but an allowance is made in the costs to cover TCNZ's DSLAM costs (including a return on capital). Hence, the actual number of lines per exchange is not a restricting factor, as the capacity can be expanded to meet demand.

TCNZ also supplied to the Commission its plans for upgrading ESAs over the next few years, but the scheduling of this investment by year was not detailed. For the purposes of modelling, it has been assumed that an equal number of exchanges was upgraded in each of the three years of the upgrade plans (ie, the total number of planned upgraded ESAs over the next three years was divided by three to obtain the annual number of upgrades). Furthermore, it has been assumed that the exchanges were upgraded in order of size, with the largest upgraded first. This provided the number of exchanges, and hence subscribers, that could be accessed by bitstream services. It was assumed that no exchanges were upgraded beyond those in TCNZ's plans, which may reduce the total number of lines available for bitstream access, and hence underestimate the potential consumer benefits.

## 4.4.2 Price

The retail services being delivered through bitstream access are the same as those for DSL data; the DSL data retail prices (Option 2) are therefore applied to the bitstream services under specification.

Under designation, the prices are built up in the same way as for Options 1 and 2, but some different costs are incurred.

# 4.4.3 Entrant subscribers

Although the entrant does not upgrade new exchanges, it can expand the market by competing on price (or, in future, on the bundle of services it offers, as discussed in section 2.2). Thus, the entrant gains existing subscribers from TCNZ, or competes with TCNZ for new subscribers as they take broadband services.

The number of new subscribers in each year (in the TCNZ-upgraded exchanges) is determined in the same way as for DSL data above, as is the apportionment between TCNZ and the entrant for churn and competitive acquisition.

These calculations give the number of subscribers that take bitstream access services from the entrant.

# 4.4.4 Entry decision

The entry decision is also modelled in the same way as for DSL data, using the revenues from subscribers and the costs specific to bitstream access.

# 4.4.5 Welfare calculation

In line with the DSL data welfare calculation, there is a price and take-up effect for existing and new subscribers, respectively. Although the subscribers that are predicted in the counterfactual to take broadband would not be receiving their services through bitstream access, the *product(s)* they receive would be identical. Therefore, the consumer is ambivalent regarding the technology used to deliver its services, and all that matters is the relative price. To the consumer, the delivery of services by TCNZ or a bitstream access operator would appear the same.

## 4.5 Fixed PDN

The fixed PDN consists of a set of dedicated data access lines running to customers' premises. Each access line comprises two twisted copper pairs: one provides an upstream connection; the other a downstream connection. As the copper is dedicated to data, consumers need a separate voice line, and the fixed PDN connections are installed as required, rather than being readily available should a customer decide to subscribe. For these reasons, the fixed PDN is assumed to be a business, rather than a residential, service.

## 4.5.1 Potential subscribers

The number of potential subscribers to fixed PDN services is limited to the number of existing data tails in TCNZ's network because the entrant unbundles the existing infrastructure and does not install new connections.

# 4.5.2 Pricing

The services delivered by the fixed PDN are numerous and varied. For example, it is possible to provide high-speed Internet access, as with ordinary DSL connections. However, the fixed PDN could also be used by customers to transmit low-level automated data, such as stock-replenishment systems in supermarkets. It is therefore difficult to identify a single, or even representative, service that is delivered over the fixed PDN. In consultation with the Commission staff, OXERA considered two products: Frame Relay and DDS. Prices for the representative product used in the modelling were based on an average of prices for sample customers (see section 5).

## 4.5.3 Entrant subscriber acquisition

As the entrant does not expand the number of fixed PDN connections, the subscriber growth is limited to churning existing fixed PDN subscribers away from TCNZ's services.

## 4.5.4 Entry decision

In the same way as for the other forms of unbundling, the entrant will decide whether to unbundle a particular exchange on the basis of the relative discounted costs they would incur and revenues they would acquire. However, because of the lack of definition regarding the representative product, it is difficult to match underlying costs with services. A top-down approach is therefore adopted for the pricing in both specification and designation; the prices in designation are assumed to be a proportion of the specification prices.

As in the other options, the model cycles through the prices for one and then two entrants in order to determine the appropriate level of entry. The outputs from this are the identity of the exchanges where unbundling of the fixed PDN occurs, the number of entrants, and thus the number of lines that are affected.

# 4.5.5 Consumer welfare analysis

The entrant is only taking demand away from TCNZ, so the welfare calculation consists solely of a price effect. Those subscribers that take data services from the entrant following unbundling benefit from a lower price. Therefore, the welfare benefit equates to the number of subscribers affected, multiplied by the price fall compared with the counterfactual.

# 4.6 Impacts of other regulatory decisions

## 4.6.1 Number portability

As of December 2003, New Zealand does not have a direct number portability scheme that would allow customers to retain their existing telephone number when they move house.<sup>26</sup> It is anticipated that such a scheme will be introduced in the foreseeable future.

The impact of a number portability system would be to increase the likelihood of consumers switching suppliers, as the switching costs are reduced. It has been identified in both mobile and fixed-line markets that the need to change telephone number can significantly inhibit switching behaviour.<sup>27</sup>

In terms of the modelling, the introduction of number portability could be accommodated through an adjustment of the churn rate in the full unbundling scenario to take into account the anticipated higher switching rate. As the other forms of unbundling relate to data rather than voice services, number portability is not relevant.

## 4.6.2 Wholesale decision

Following a determination by the Commission, TCNZ is supplying a range of data and voice products to other carriers. The wholesale price is calculated on a retail-minus basis using 16%. This could alter entrants' decisions over which regulatory route to use to supply consumers through purchase of wholesale services from TCNZ, or LLU.

The wholesale determination is likely to encourage more entry, and thus have a downward effect on retail prices. Following discussions with the Commission, it was determined that a combination of the wholesale decision and technological advances leading to reduced costs would be likely to generate price falls of 5% up to 2009 in Options 1–3, and 3% in Option 4.

<sup>26</sup> There is an indirect process where the number remains with the initial provider and calls are then forwarded to the appropriate service provider, but this is an unwieldy and inefficient method of achieving number portability.

<sup>27</sup> Monopolies and Mergers Commission (1995), 'Telephone Number Portability: A Report on a Reference under Section 13 of the Telecommunications Act 1984', December.

# 5. Data Employed

This section sets out the data used in the model, and how prices and costs have been derived for the counterfactual and the options.

As discussed, the test for whether firms enter the market is based on an NPV analysis of the expected revenues and costs. The revenues are built up from the appropriate price multiplied by the number of subscribers.<sup>28</sup> The stream of net revenues is then discounted at a pre-tax cost of capital of 18% (decided in conjunction with the Commission—see the Commission's final report), to result in an entry decision. Where there is entry, the welfare calculation takes into account the increase in the number of subscribers over the counterfactual and the prevailing prices. This results in the consumer surplus measurement.

The number of subscribers is described in section 5.1. Prices are outlined in sections 5.2 (counterfactual prices); 5.3 (specified prices); and 5.4 (designated prices). The relevant costs—or, as referred to in subsequent sections, the 'cost side'—are also discussed in section 5.4, alongside the development of the designated prices. These prices and the costs are closely linked, given the cost-based approach to designated prices.

One major difference between the options is the inclusion of voice in Option 1. For simplicity in the model, the numbers of subscribers for voice and data are forecast as separate populations, although it is assumed that there is a complete overlap. There may be voice subscribers in addition to the number of data subscribers,<sup>29</sup> in which case it is assumed that these customers take voice services only.

To cope with this in the model, in terms of costs and revenues, the per-line costs and revenues for data subscribers are included as incremental to the per-line costs and revenues included for voice subscribers. In this way, the correct level of revenue and cost is assigned both to subscribers that take the combined package and to those that take voice services only. In the derivation of prices, this means that the data-only prices (and therefore) revenues included are the difference between the price for the bundled product and the voice-only product. Similarly, on the cost side, only incremental per-line data costs (eg, the ISP charge) are included.

The fixed PDN has also been modelled slightly differently. The entry decision is based on the same NPV calculation as described for the other options, using the same discount rate. For the costs, it is assumed that the data services to be provided over the fixed PDN have a speed of up to 2 Mbps, as these could be supplied over copper circuits. For services over 2 Mbps, different technology, such as radio or fibre, would be required.

<sup>&</sup>lt;sup>28</sup> GST is removed from residential revenues.

<sup>&</sup>lt;sup>29</sup> By construction, the number of data subscribers cannot exceed the number of voice subscribers.

The available information on the costs underlying the provision of services over the fixed PDN is limited. Assumptions have been made, based on experience from other jurisdictions. As noted, it is assumed that an entrant would provide such services only over existing data tails, and therefore would incur the costs of unbundling, rather than those of installing the data tails. The different cost components were calculated for the sample customer specification [3] TDR. These costs were then converted into cost per exchange/tail. The cost categories considered are examined below.

## 5.1 Modelling assumptions

### 5.1.1 Forecasting business and residential data subscribers

The important measurement in the model is the incremental change over the counterfactual that results from each unbundling option. Hence, the first step is to forecast take-up in the counterfactual. The second step is to forecast take-up in each option. The difference between the two is driven by the price change on unbundling, which drives increased take-up through an elasticity effect.

The third step is the welfare calculation, where the price and new subscriber aspects of the welfare effects are calculated based on the subscriber numbers derived. The calculation is done in each year, using the prevailing  $P_0$  in that year (ie, allowing for adjustment for the reduction in ISP charge and price drop due to cost pressures), and the appropriate entry price (ie,  $P_1$  or  $P_2$ ) in that year, which in each year will be moving closer (along its glide path) to the final price. The welfare benefits are discounted at a rate of approximately 6%, this being the yield on New Zealand government bonds.

## Counterfactual forecast

As noted in section 2, the Commission requested that OXERA adjust the penetration and take-up profiles for the counterfactual so that the forecast number of subscribers approximates TCNZ's forecast levels of take-up. The counterfactual forecast of business and residential customers has therefore been derived from information provided by TCNZ. The starting point for this forecast is the end of 2003, which has been interpolated from TCNZ's mid-2002 and mid-2003 figures. This represents a change from the position in the draft paper presented prior to the Conference.

The forecast of subscribers used in the counterfactual is shown in Table 5.1, together with TCNZ's forward view (derived using information provided for this investigation).

|                  | 2004    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    |
|------------------|---------|---------|---------|---------|---------|---------|---------|
| Residential      | [🎢] TDR | [X] TDR | [X] TDR | [》] TDR | [🎢 TDR  | [X] TDR | [⊁] TDR |
| TCNZ Residential | [X] TDR | [×] TDR | [×] TDR | [X] TDR | [X] TDR | [X] TDR | [X] TDR |
| Business         | [》] TDR | [X] TDR | [X] TDR | [》] TDR | [氷] TDR | [X] TDR | [X] TDR |
| TCNZ Business    | [X] TDR | [×] TDR | [×] TDR | [X] TDR | [X] TDR | [×] TDR | [X] TDR |
| Total            | [X] TDR | [X] TDR | [X] TDR | [》] TDR | [》] TDR | [X] TDR | [》] TDR |
| TCNZ total       | [X] TDR | [×] TDR | [×] TDR | [X] TDR | [⊁] TDR | [⊁] TDR | [X] TDR |

 Table 5.1: Forecast of DSL subscribers in the counterfactual (000s)

Source: OXERA calculations.

### Forecasts for Options 1 and 2

The number of subscribers per ESA per year for data services in the options is determined as follows:

Number of subscribers = price change  $\times$  price elasticity  $\times$  penetration rate  $\times$  take-up rate  $\times$  (1 – competing technology churn)  $\times$  number of available lines

The relevant **price change** is between  $P_0$  and  $P_1$  for one-firm entry, and between  $P_0$  and  $P_2$  for two-firm entry.

Starting  $P_0$  is used (ie, before the price drop for cost pressure has been factored in), and compared with either  $P_1$  or  $P_2$  in year 5. For consistency,  $P_1$  and  $P_2$  are also used at a level that does not include the price drop due to cost pressure.

As specific **price elasticities** for New Zealand were not available, information was sought on evidence of elasticity calculations in other countries for the take-up of high-speed data services. Table 5.2 summarises the papers identified.

#### Table 5.2: Academic research on high-speed data price elasticities

| Demand price elasticity for high-speed residential cable–modem<br>Internet access between –1.08 and –1.79 | Kridel, Rappoport and Taylor (2000) |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------|
| Point demand price elasticity for residential broadband in the USA between –2.15 and –3.76.               | Goolsbee (2001)                     |
| Own-price demand elasticity (DSL): -1.18                                                                  | Crandall, Sidak and Singer (2002)   |
| Own-price demand elasticity (cable modem): -1.22                                                          |                                     |
| Own-price elasticity for broadband Internet access: at least -2                                           | BT (2003)                           |
| Own-price demand elasticity (DSL): -1.46                                                                  | Telecommunications Research Group,  |
| Own-price demand elasticity (cable): -0.59                                                                | Colorado University (2002)          |
| Own-price demand elasticity (broadband) between –1.3 and –3.1 (based on experiment)                       | Varian (2002)                       |
|                                                                                                           |                                     |

*Sources:* Kridel, D., Rappoport, P. and Taylor, L. (2000), 'The Demand for High-Speed Access to the Internet: The Case of Cable Modems', 13th Biennial Conference of the International Telecommunications Society. Goolsbee, A. (2001), 'Subsidies, The Value of Broadband, and The Importance of Fixed Costs', GSB University of Chicago. Crandall, R., Sidak, J.G. and Singer, H. (2001), 'The Empirical Case Against Asymmetric Regulation of Broadband Internet Access', *Berkeley Technology Law Journal*, **17**:3. BT (2003), 'BT's Response to Oftel's Consultation Document "Review of the Wholesale Broadband Access Market", July 7th. Telecommunications Research Group (2002), 'Broadband Demand Study: Final Report', University of Colorado at Boulder, November 15th. Varian, H. (2002), 'The Demand for Bandwidth: Evidence from the INDEX Project', University of California at Berkeley.

The estimate used in the model was an elasticity of -1.5 in the central case. As can be seen from the table, this is a reasonably conservative approach, as the range of industry elasticities is from -1.08 to -3.1, and there are a number of studies reporting figures of around -1.5.

The overall level to which demand will ultimately rise, given a particular price and sufficient time for consumers to adopt the new services, is referred to as the **penetration rate**. Ideally, this level should be identified through the use of detailed consumer survey information. TCNZ was unable to provide OXERA with this information. The penetration rate was adjusted in order to approximate TCNZ's forecast of broadband subscribers in the counterfactual.

As with the penetration rate, the **take-up rate** for residential and business subscribers was adjusted in order to approximate TCNZ's forecast broadband subscription levels in the counterfactual.

The above calculation results in an estimation of the number of subscribers that are likely to take high-speed data services, although not all of these will choose ADSL technology. The model therefore allows for a proportion of subscribers to choose to take their services from alternative infrastructures (mainly cable, satellite or wireless). The relevant parameter is the **competing technology churn** rate.

There are drawbacks with satellite and wireless which suggest that these infrastructures may not be direct substitutes for the fixed wireline. Nonetheless, consumers do currently switch from TCNZ to these different networks and are likely to continue to do so in future as new technologies improve and are able to make their services more widely available. Wireless broadband services from companies such as Woosh may provide an alternative to DSL broadband going forward, although there is no certainty of this. Therefore, the competing technology churn factor has been set at 5%.

Take-up within any ESA is naturally limited by the number of lines that are **technically available** for DSL. The basis for the number of technically upgradeable lines in each ESA is information supplied by TCNZ, which provided information on the number of business and residential circuit ends.<sup>30</sup> TCNZ has defined lines in range as those that meet its deployment criteria for DSL.<sup>31</sup> This includes lines up to 7km, but only at a rate of 500 Kbps. The model allows this distance to be reduced, and so lowers the number of lines in range. This calculation uses teledensity information supplied by TCNZ.<sup>32</sup>

### Forecast for Option 3

The methodology for forecasting subscribers under Option 3 (bitstream unbundling) is the same as described previously, although it is assumed that bitstream services will only be available where TCNZ has upgraded an exchange (ie, installed a DSLAM), or has indicated that it intends to do so. TCNZ provided details of ESAs expected to be upgraded by 2006. For the CBA, it was assumed that these would be upgraded in descending order of size and that a third would be completed in each of 2004, 2005 and 2006.

### Forecast for Option 4

It is assumed that the number of potential subscribers to the fixed PDN stays flat. The total number of subscribers to the fixed PDN is taken to be 'Non-PSTN' lines, as supplied

<sup>&</sup>lt;sup>30</sup> Data received from TCNZ, July 9th 2003.

<sup>&</sup>lt;sup>31</sup> Data received from TCNZ, July 9th 2003.

<sup>&</sup>lt;sup>32</sup> Data received from TCNZ, July 16th 2003.

by TCNZ.<sup>33</sup> The entrant will only be able to acquire customers that are already subscribing to TCNZ services, as these are the only customers with appropriate data tails.

## 5.1.2 Apportionment of data subscribers between TCNZ and entrants

The methodology described in the previous section results in a forecast of the entire DSL market going forward. For a new entrant to consider entering the market to provide high-speed Internet services over unbundled loops, it must be able to gain new subscribers from this market.

New entrants gain subscribers in the model in two ways: through churn from TCNZ; and through competition with TCNZ for new subscribers.

The churn rate used in the model is a blended rate between business and residential, and is set at 5%. This is a net churn rate, which means that it takes account of both churn from TCNZ, and win-back by TCNZ from the entrant. The 5% figure is derived from the experience of competition between TCNZ and TelstraClear in Wellington and Christchurch. It also seems reasonable in light of information supplied by TelstraClear at the Conference, indicating churn rates of up to 18%.<sup>34</sup>

The competitive acquisition rate is 25%, which implies that entrants gain 25% of all new subscribers, with the remainder going to TCNZ. This is less than 50% market sharing, as might be expected in a fully competitive situation, recognising that TCNZ is likely to retain an element of consumer loyalty, despite the market liberalisation.

For Option 4 (fixed PDN), the forecast of subscribers an entrant may be able to attract is calculated as a net churn from TCNZ's subscriber base. In consultation with the Commission, the rate was set at 5%.

### 5.1.3 Voice subscribers

The number of voice subscribers is relevant only to Option 1 (full unbundling), where the entrant must offer a bundled product, or voice-only services.

The number of voice subscribers in the counterfactual is assumed to remain flat, and corresponds to the PSTN circuit ends supplied by TCNZ.<sup>35</sup>

Entrants are assumed to win voice subscribers away from TCNZ using a net churn rate of 5%. This is a blended rate that applies to both business and residential customers.

<sup>&</sup>lt;sup>33</sup> Data received from TCNZ, July 9th 2003.

<sup>&</sup>lt;sup>34</sup> TelstraClear (2003), 'Annexure 1—TelstraClear LLU & Bitstream Business Case', October 29th. It was unclear whether these were net churn figures.

<sup>&</sup>lt;sup>35</sup> Data received from TCNZ, July 9th 2003.

## 5.1.4 ISP charges

In the residential counterfactual, the ISP charges are calculated in the same way as the retail prices—ie, as a weighted average of the ISP charges faced by customers. This results in an ISP charge of NZ\$385 per customer.

By the end of the period of analysis (2009), it is assumed in the counterfactual that most customers will have taken higher-bandwidth products which attract lower ISP charges. As a result, the ISP charge becomes NZ\$180 by year 5 (2009). In both specification and designation, it is assumed that competition results in a faster migration to higher-speed packages, and therefore all consumers only incur ISP charges of NZ\$120 per year (NZ\$10 per month).

In the options, the lower ISP charge is incorporated into  $P_1$  and  $P_2$ , but the price is not assumed to reach these levels until the fifth year after unbundling due to the price glide path. Therefore, by implication, the ISP charge itself does not fall immediately to NZ\$120, but gradually over the period of analysis.

## 5.2 Price derivation and price levels in the counterfactual

Retail prices in the counterfactual are assumed to be the same as those currently charged by TCNZ. These prices  $(P_0)$  form the basis against which consumer surplus changes resulting from regulatory intervention are measured. The model makes a distinction between residential and business customers.

TCNZ offers many and varied service packages, therefore, for model tractability, 'representative' products and prices are needed in the counterfactual. The representative products required for each option are:

- Option 1 (full unbundling)—this requires a representative bundled voice *and* data product for both business and residential customers. The product is derived as the summation of separate voice and data products. In the case of residential products, this is because TCNZ no longer offers a bundled voice and data product.<sup>36</sup> For the business sector, no information was available on the pricing of bundled voice and data business products, as these are determined by commercial agreements with TCNZ on an individual basis;
- Options 2–3—these require a data product for both business and residential segments (this is the same data product as derived for Option 1);
- Option 4 (fixed PDN)—this requires a comparative data product for the business segment only.

Further, as described previously, prices in the counterfactual are assumed to fall by 5% (Options 1–3) or by 3% (Option 4) over the life of the analysis, to reflect competitive and

<sup>&</sup>lt;sup>36</sup> As of October 2003, TCNZ only offers a triple-play bundle, which incorporates Sky TV as well.

other downward pressures on cost.<sup>37</sup> In the case of data products in the residential sector, there is a further downward adjustment to reflect the contribution to the ISP charge over time. This is discussed further below.

## 5.2.1 Counterfactual products and prices for Options 1–3

Table 5.3 shows some of the packages offered to residential customers by TCNZ, including the calls and access voice product and HomeLine. For high-speed Internet products, it shows the monthly charge currently payable to TCNZ and the up-front connection charge. It does not show the cost of any modem needed, nor does it show any charges payable to an ISP where the DSL services are accessed via an ISP other than Xtra. TCNZ now includes this in the overall charge, rather than stating it separately.

However, ISPs, such as ihug, are currently charging NZ\$10<sup>38</sup> per month for access to all their residential ADSL Internet options, except for the Starter pack, which is NZ\$29.95.39 The total cost to the consumer of using ihug to access the Internet is equivalent to the cost of accessing the Internet through Xtra.

| Product                        | Description<br>(speed/traffic limit) | Monthly charge<br>(NZ\$, incl. GST) | Connection charge<br>(NZ\$, incl. GST) |
|--------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|
| Voice                          |                                      |                                     |                                        |
| HomeLine                       | Unlimited local calls                | 39.3                                | 38                                     |
| Data                           |                                      |                                     |                                        |
| Jetstream Home 1000 Full Speed | 2 Mbps/1 Gbps                        | 79.0                                | 99–248                                 |
| Jetstream Home 500 Full Speed  | 2 Mbps/500 Mbps                      | 59.0                                | 99–248                                 |
| Jetstream Starter Access       | 128 Kbps/unlimited                   | 64.9                                | 99–248                                 |

#### Table 5.3: Some of TCNZ's residential packages

Source: TCNZ's website, accessed December 9th 2003, and data received from TCNZ, July 16th 2003.

Tables 5.4 shows some of the packages offered to business customers by TCNZ. ISP charges are included separately in this table as the monthly charge payable to TCNZ does not include this charge. Again, the cost of modems is not shown.

The basic business access product for voice, Business Line, does not include local calling. Local calling at 4.55 cents per minute is therefore also assumed.

<sup>&</sup>lt;sup>37</sup> As discussed elsewhere, this fall in prices is mirrored in the unbundling options to reflect the fact that the same pressures would be evident. <sup>38</sup> Previously NZ\$20, and included at this level in the draft paper.

<sup>&</sup>lt;sup>39</sup> Previously NZ\$34.95, and included at this level in the draft paper.

| Product         | Description<br>(traffic limit) | Monthly charge (NZ\$, excl. GST) | ISP charge<br>(NZ\$, excl. GST) | Connection<br>charge<br>(NZ\$, excl. GST) |
|-----------------|--------------------------------|----------------------------------|---------------------------------|-------------------------------------------|
| Voice           |                                |                                  |                                 |                                           |
| Local calling   |                                | 4.55¢/min                        | -                               | -                                         |
| Business Line   |                                | 58.42                            | 17.78                           | 55.00                                     |
| Data            |                                |                                  |                                 |                                           |
| Jetstream 600   | 600 MB                         | 61.33                            | 17.78                           | 80–220                                    |
| Jetstream 1200  | 1.2 GB                         | 120                              | 17.78                           | 80–220                                    |
| Jetstream 1800  | 1.8 GB                         | 176                              | 17.78                           | 80–220                                    |
| Jetstream 3000  | 3 GB                           | 292                              | 17.78                           | 80–220                                    |
| Jetstream 5000  | 5 GB                           | 458                              | 17.78                           | 80–220                                    |
| Jetstream 10000 | 10 GB                          | 888                              | 17.78                           | 80–220                                    |
| Jetstream 20000 | 20 GB                          | 1600                             | 17.78                           | 80–220                                    |

### Table 5.4: TCNZ's business packages

Source: TCNZ's website, accessed August 11th 2003, and data received from TCNZ, July 16th 2003.

The representative voice product for residential users (for Option 1) is assumed to be the HomeLine voice product, which includes free local calling and access for NZ\$39.30 per month (including GST). The representative voice product for business users assumes a standard NZ\$0.0455 per minute for local calling. Based on information in TCNZ's annual report, an average annual spend of NZ\$285 (excluding GST) per business customer is included.

Appropriate representative data prices for both business and residential customers have been calculated using an average of the prices of the different packages (including the cost of the ISP), weighted by the proportion of customers currently subscribing to each package. The weights used are presented in Table 5.5.

| Product                    | Weights          |
|----------------------------|------------------|
| Residential packages       |                  |
| Data                       |                  |
| Jetstream Home 1000 Access | [ <b>※</b> ] TDR |
| Jetstream Home 500 Access  | [)×] TDR         |
| Jetstream Starter Access   | [)×] TDR         |
| Business packages          |                  |
| Data                       |                  |
| Jetstream 600              | [ <b>※</b> ] TDR |
| Jetstream 1200             | [ <b>※</b> ] TDR |
| Jetstream 1800             | [ <b>※</b> ] TDR |
| Jetstream 3000             | [ <b>※</b> ] TDR |
| Jetstream 5000             | [×] TDR          |
| Jetstream 10000            | [ <b>※</b> ] TDR |
| Jetstream 20000            | [ <b>%</b> ] TDR |

# Table 5.5: TCNZ's residential and business packages—proportion of customers (%)

Source: Data received from TCNZ, August 12th 2003.

A weighted contribution to the costs of the ISP is also included in the counterfactual price for the residential data product. Over the course of the CBA, this element is expected to fall to reflect the fact that, as consumers become more aware of broadband products, they may start to upgrade and buy more sophisticated packages. This would imply a reduction in ISP charges, so the contribution of ISP charges falls from NZ\$29 to NZ\$15 per month, where this ISP charge is a representative charge that reflects the different packages available. This results in a counterfactual price at the end of the CBA that is considerably lower than the starting price level.

The level of ISP charge is not expected to fall to NZ\$10 per month as in the options. This reflects an expected difference in the level of learning and awareness between the counterfactual and unbundling options—unbundling is expected to result in more competition and therefore greater efforts to make consumers aware of the product and its benefits.

The resulting representative prices for Option 1 (bundled voice and data) and Options 2–3 (data only) for both business and residential customers are shown in Table 5.6. Counterfactual starting and ending (ie, year 5) prices are shown. The final  $P_0$  is achieved over the life of the CBA, as prices move down a glide path.

| Service         | Residential             | idential customers <sup>1</sup> |                         | Business customers <sup>2</sup> |  |
|-----------------|-------------------------|---------------------------------|-------------------------|---------------------------------|--|
|                 | Starting P <sub>0</sub> | P₀—year 5                       | Starting P <sub>0</sub> | P₀—year 5                       |  |
| Option 1        |                         |                                 |                         |                                 |  |
| Voice           | 472                     | 448                             | 986                     | 937                             |  |
| Data            | 783                     | 596                             | 1,428                   | 1,368                           |  |
| Combined        | 1,255                   | 1,044                           | 2,414                   | 2,304                           |  |
| Options 2 and 3 | 783                     | 596                             | 1,428                   | 1,368                           |  |

# Table 5.6: Retail prices (NZ\$) for residential and business customers in the counterfactual

*Note*: <sup>1</sup> Inclusive of GST and ISP charges. Prices exclude other charges such as modems and filters; connection charges not shown. <sup>2</sup> Exclusive of GST; inclusive of ISP charges. Prices exclude other charges such as modems and filters; connection charges not shown. *Source*: OXERA calculations; TCNZ website.

#### 5.2.2 Counterfactual prices in Option 4

As mentioned previously, it is difficult to identify a single, or even representative, service that is delivered over the fixed PDN. This is because the types of service that can be provided differ significantly, with important price variations between products. The pricing structure generally includes an installation charge and monthly charges for access and transmission. However, the price paid will depend on a number of factors, including location of head office, and number and type of branches (ie, whether they are connected to metro or other exchanges). In consultation with the Commission, two services were used to determine the price of the representative product: Frame Relay and DDS. The prices of these services, which were provided to the Commission by TCNZ, are based on a sample customer. A summary of these sample prices is presented in Table 5.7.

| Table 5.7: TCNZ's data services | (sample customer) (NZ\$) |
|---------------------------------|--------------------------|
|---------------------------------|--------------------------|

| Data product             | Installation charge | Access charge<br>(monthly) | Transmission charge<br>(monthly) |
|--------------------------|---------------------|----------------------------|----------------------------------|
| Frame Relay <sup>1</sup> | [≯] TDR             | [×] TDR                    | [X] TDR                          |
| DDS <sup>2</sup>         | [×] TDR             | [X] TDR                    | [X] TDR                          |

*Note:* <sup>1</sup> This refers to a sample customer with [ $\gg$ ] TDR. <sup>2</sup> This refers to a sample customer with [ $\gg$ ] TDR. *Source*: Data received from TCNZ, July 16th 2003; updated December 1st 2003.

The variable price of the representative products is an average of the annualised access and transmission charges, weighted by the proportion of customers taking these services.<sup>40</sup> The resulting price corresponds to an average price for a sample customer with  $[\mathscr{H}]$  TDR. This average price has been expressed in terms of average price per tail/exchange. The resulting annual price per tail corresponds to P<sub>0</sub>, and is NZ\$[ $\mathscr{H}$ ] TDR.

<sup>&</sup>lt;sup>40</sup> Data received from TCNZ, July 16th 2003.

Downward cost pressure is also expected in Option 4, but the expected price reduction is lower, at 3%. P<sub>0</sub> is expected to fall to NZ[>] TDR by the end of the CBA.

# 5.3 Price derivation and price levels under specification

# 5.3.1 Methodology

As noted in the introduction, specification implies that prices are subject to competitive pressures. The effects of competition are modelled by calculating the specified prices using a top-down approach. Two prices are calculated:  $P_1$  and  $P_2$ .  $P_2$  is the retail price that would emerge as a result of full competition. Full competition is defined as the case where there are at least two entrants in addition to TCNZ in a specific ESA. Prices follow a glide path to reach  $P_2$  over the five-year period used. It is assumed that the retail prices of TCNZ and those of the entrants will converge at this price—ie, at this point,  $P_2$  is the same for TCNZ as for the other two entrants.

 $P_1$  is the price an entrant would be able to charge if there were only one entrant. It is assumed that the full benefits of competition will not be obtained in this instance; therefore  $P_1$  is slightly above  $P_2$ . TCNZ is assumed to match this entry price. This approach contrasts with the approach taken previously, where it was assumed that TCNZ would not drop its price as far as the entrant's price.

 $P_2$  is calculated according to the following formula:

 $P_2 = P_0 - \% \Pi - efficiency + unbundling costs$ 

- $P_0$  is TCNZ's pre-entry retail price, as discussed in section 5.2.
- % II is the reduction in TCNZ's profitability that would be expected given full competition. A reduction of 5% of the pre-entry price  $P_0$  is assumed in the central case. Previously, in the draft paper, this had been set at 10%. Following the Conference, it was felt that 5% was a more appropriate profitability target. This gain occurs in the first year of specification.
- **Efficiency** is the underlying assumption that TCNZ will become more productively efficient when competition is introduced. An annual efficiency gain of 2.5% is assumed in the central case. Over the five-year period, this would imply a 13% reduction in  $P_0$  after the introduction of specification.

The efficiency parameter incorporated in the CBA is based on OXERA's analysis of TCNZ's efficiency, as detailed in the accompanying paper, 'Estimating the Relative Efficiency of Telecom New Zealand'.

OXERA was initially presented with analysis carried out by PricewaterhouseCoopers Consulting, which showed that TCNZ was as efficient as

the best US local telecoms operators.<sup>41</sup> Subsequent analysis identified some flaws in the procedures adopted in the estimation of TCNZ's efficiency; in addition, OXERA was provided with more information by TCNZ. Correcting for the methodological flaws and including the additional information enabled OXERA to calculate a range of estimates for the efficiency improvements that TCNZ would have to make in order to become efficient. The range calculated when considering operating costs is 3.4–7.4%. The analysis includes sensitivities using 'total costs' (rather than operating costs only). This yielded a range of 0.7–4.7%. In the modelling, 2.5% was employed to reflect the mid-point of the 'total cost' estimated range and the lower end of the more robust operating cost- reduction range. See the accompanying OXERA paper for further details.

Furthermore, the efficiency improvements deducted from the price allow only for catch-up to the efficiency frontier, and do not adjust for the shifting of the frontier over time. In high-technology industries, the frontier is considered to move relatively quickly due to technological improvements. Therefore, even if TCNZ were on the frontier, annual efficiency gains could still be expected. In summary, the efficiency allowance in the model is a conservative estimate.

The efficiency estimate has been reduced since the Conference, from 3% to 2.5% per annum. This is in light of the additional modelling work undertaken and the additional information supplied by TCNZ.

• Unbundling costs are costs incurred which would not be incurred in the counterfactual. These must be recovered. The main costs relate to the set-up of TCNZ's OSS and the costs of regulation (submission and Commission costs) incurred by the entrant. The costs of regulation under specification are calculated at half of the level of costs incurred under designation.<sup>42</sup> Therefore, regulatory costs of NZ[\$×] CDR are allowed per connection in each option under specification. OSS costs per connection depend on the level of costs incorporated (see below). The range, however, is NZ[\$×] CDR per line, under specification.

The level of regulatory costs was set by the Commission, which also attached a degree of probability (80%) to the likelihood of there being an inquiry. Accordingly, total entrant regulatory costs (under designation) are set at NZ[S > ] CDR—NZ[S > ] CDR of Commission costs<sup>43</sup> and NZ[S > ] CDR of submission costs. This is recovered through prices by spreading across 50,000 DSL lines and amortising over a five-year life. The '50,000 lines' figure is used as a conservative estimate of DSL lines that an entrant may acquire over the life of the CBA. This level of regulatory costs to be recovered is similar to the level used in the draft report.

<sup>&</sup>lt;sup>41</sup> PwC Consulting (2002), 'TCNZ Efficiency Study Based on Stochastic Frontier Analysis (SFA)', September

<sup>&</sup>lt;sup>42</sup> Commission decision. See NZCC (2003), 'Part 3C: Estimates of Regulatory Costs', November 27th (revised).

<sup>&</sup>lt;sup>43</sup> The Commission has ruled that its costs should be recovered 50% from TCNZ and 50% from the entrant(s). NZCC (2003), 'Part 3C: Estimates of Regulatory Costs', November 27th (revised).

The Commission allowed that TCNZ should recover all reasonable costs associated with implementing OSS that result from unbundling. These costs should be recovered over all DSL lines—a figure of 250,000 lines is used to represent an average number of DSL lines over the life of the CBA.

At the Conference there was considerable discussion about the appropriate level at which such costs should be set. In conjunction with the Commission, it was decided to allow for three levels of OSS cost: low, central and high. The low case assumes that additional OSS costs are zero, on the basis of the wholesale experience in New Zealand where there is no charge for OSS. This does not mean that customers make no contribution, since the wholesale access charges include some element for recovery of OSS. It was not possible to ascertain whether this was the case, but, at least in Australia and the UK, it appears to be that the wholesale access charges provide a mechanism for recovery of OSS charges. For example, Oftel states:

BT should be able to recover its reasonable system set-up costs. Oftel is content that these be recovered from the connection charge on individual loops.<sup>44</sup>

The central case allows for NZS[ $\gg$ ] TDR in onset and ongoing OSS costs over the life of the CBA; the high case allows for NZS[ $\approx$ ] TDR. These costs are allocated over 250,000 DSL lines, where this number represents an average of the DSL lines in the counterfactual. Since there are likely to be more DSL lines in the options, this approach is conservative.

For all three cost levels, it is assumed that the OSS system would initially be operated manually, and that this would continue until a sufficient volume of local loops is being unbundled to justify automating the process.

This approach contrasts to the NZS[ $\gg$ ] TDR of OSS costs that were allowed to be recovered from consumers in the draft report.

For Option 4, where prices under designation are also calculated on a top-down basis for the unbundling of the fixed PDN, 100% of these costs are added back.

As discussed elsewhere in section 4, following on from the Conference it was decided that prices in the options should fall by a further percentage (5% in Options 1–3; 3% in Option 4) over the CBA to reflect downward cost pressure.

 $P_1$  is calculated as:

 $P_1 = P_2 * (1 + uplift factor)$ 

<sup>&</sup>lt;sup>44</sup> Oftel (2000), 'Access to Bandwidth: Conclusions on Charging Principles and Further Indicative Charges', August.

The uplift factor is set at 10%, and is applied to the  $P_2$  achieved in year 5, before ISP charges, GST and the price drop due to cost pressure. These are then added back.

As noted, given entry by one operator, it is assumed that TCNZ responds by matching that entry price.

### 5.3.2 Price levels in the options under specification

This section summarises the price levels used in the options, as derived using the foregoing methodology. Counterfactual prices are also shown.

Table 5.8 shows:

- the annual P<sub>2</sub> for the representative bundled voice and data product which results after a five-year period, both for residential and business customers. This includes the price drop due to cost pressures. ISP charges are also included, at NZ\$214 per annum for business customers, and NZ\$180 per annum for residential customers;
- the annual P<sub>1</sub>, where this is the price charged by the entrant when it is the only new operator. It is assumed that TCNZ responds by matching that entry price;
- the counterfactual prices.

| Price                     | Residential customers | Business customers |
|---------------------------|-----------------------|--------------------|
|                           | Voice and data        | Voice and data     |
| P <sub>0</sub> (starting) | 1,255                 | 2,414              |
| P <sub>0</sub> (year 5)   | 1,044                 | 2,304              |
| P <sub>2</sub> (year 5)   | 917                   | 2,028              |
| P <sub>1</sub> (year 5)   | 996                   | 2,209              |

Notes: One-off connection charges are not shown but are assumed to remain constant, as in the counterfactual.

Source: OXERA calculations.

Table 5.9 shows the expected prices under specification for Options 2 and 3. It is assumed that the retail prices in the provision of bitstream services for residential and business customers are the same as those estimated under the line-sharing scenario, where the entrant provides data-only services. This is because, although the modes of delivery differ, end products provided to the consumer will be reasonably substitutable, at least initially.

### Table 5.9: Retail prices under specification—line sharing and bitstream (NZ\$ per year)

| Price                    | Residential customers | Business customers |
|--------------------------|-----------------------|--------------------|
| P <sub>0</sub> —starting | 783                   | 1,428              |
| P <sub>0</sub> —year 5   | 596                   | 1,368              |
| P <sub>2</sub> —year 5   | 542                   | 1,245              |
| P <sub>1</sub> —year 5   | 584                   | 1,348              |

Source: OXERA calculations.

For Option 4 (unbundling of the fixed PDN) the estimation of prices under specification follows the same top-down methodology used in the other options. Costs relating to the recovery of TCNZ's OSS costs of NZ\$ [ $\gg$ ] CDR and regulatory costs of NZ\$[ $\gg$ ] CDR per year are added to the prices.

However, in contrast to the derivation of designated prices in the other three unbundling options, designated prices in Option 4 are also derived using a top-down methodology. The starting point is the P<sub>2</sub> derived in specification, which is adjusted to include NZ\$[ $\gg$ ] **CDR** of regulatory costs (ie, twice the level of specification) and NZ\$[ $\gg$ ] **CDR** of OSS costs. P<sub>2</sub> under designation is then 75% of this. Table 5.10 presents the derived retail prices for Option 4 services under specification and designation.

| Price                    | Specification | Designation |
|--------------------------|---------------|-------------|
| P <sub>0</sub> —starting | [≯] CDR       | [X] CDR     |
| P <sub>0</sub> —year 5   | [≯] CDR       | [X] CDR     |
| P <sub>2</sub> —year 5   | [≯] CDR       | [为] CDR     |
| P <sub>1</sub> —year 5   | [≯] CDR       | [X] CDR     |

#### Table 5.10: Retail prices—fixed PDN for specification and designation (NZ\$ per year, per tail)

Source: OXERA calculations.

### 5.4 Price derivation and price levels under designation

Designation implies that the Commission may be called upon to regulate prices. In this case, it would be regulating the wholesale access prices, which form just one part of the final retail price charged. For Options 1–3, the retail prices charged to end-consumers under designation are determined using a bottom-up or 'cost-stack' approach, comprising:

- the wholesale access prices—one-off connection and ongoing access charges;
- costs incurred as a result of unbundling—backhaul (onset and ongoing), tie cables, collocation (onset and ongoing), switch and infrastructure connectivity, DSLAMs, TCNZ's costs of OSS, and regulatory costs;
- other costs—local calling costs for business, core network OPEX, marketing and ISP costs.

This methodology is used to calculate  $P_2$  under designation.  $P_1$  is calculated using an uplift factor of 10%, as under specification.

Costs and designated prices are closely related in the model, given this approach. This section therefore sets out both the costs that an entrant would expect to face at the level of the ESA, and the prices that a consumer might expect to pay. The aim is to include in prices an annualised, per-connection allocation of all the costs incurred in providing the

service relevant to each option,<sup>45</sup> and to include, on the cost side, at an appropriate level, all the onset and annual costs (investment and otherwise) that an entrant could expect to have to meet.

These costs are the basis for the cost side of the NPV calculation used to model the entry decision that an operator might make. They may be grouped as follows, and reflect the constituents of the bottom-up price under designation:

- one-off set-up costs; •
- investment in DSLAMs; .
- ongoing (per year, per exchange);
- fixed one-off costs per line;
- variable costs per line.

To determine the retail prices in Option 4, as noted in section 5.2.2, prices are calculated on a top-down basis in designation as well as specification. The cost-stack approach is therefore not relevant to Option 4, but the costs at the level of the ESA are important, as they form part of the operator's decision about whether to enter.

## 5.4.1 Wholesale access charges

Wholesale access charges form part of the costs used to determine the designated prices under Options 1–3. The access charge is included in the price as a cost amortised over five years—the expected life of a connection. This approach is not relevant to Option 4, where the designated prices are top-down.

The appropriate wholesale access prices for the modelling have, in part, been provided to the Commission by Covec Ltd.<sup>46</sup> Covec's report included average and median access (ie, ongoing) and connection charges for full and shared access, under designation. For the purposes of the modelling, the median numbers were used for Options 1 and 2-these costs are shown in Table 5.11.

Covec also discussed a methodology for deriving wholesale rental charges and access connection charges for Option 3 (bitstream), based on a modified retail-minus approach. OXERA decided not to use a retail-minus approach since, within the context of potential unbundling, the retail price may not be stable.

Instead, for Option 3, the wholesale cost was decomposed into the onset and ongoing cost of access to the copper, plus the onset and ongoing (ie, collocation) cost of access to the DSLAMs that form part of the bitstream service. An allowance for the cost of capital (at

<sup>&</sup>lt;sup>45</sup> This approach does not provide a LRIC-type result. The methodologies appear similar, but the cost-stack approach to pricing under designation cannot be as precise as a LRIC-type approach due to time constraints. Moreover, there is no explicit assumption about the level of cost recovery. <sup>46</sup> Covec (2003), 'Pricing of Unbundled Access for New Zealand Commerce Commission', December.

18%) was built into this cost. These latter costs amounted to NZ\$74.4 per annum, and are included in the monthly access fee shown in Table 5.11.

# Table 5.11: Wholesale access (ongoing) and connection charges under<br/>designation for Options 1–3

| Option                             | Monthly access fee (NZ\$) | Connection charge (NZ\$) |
|------------------------------------|---------------------------|--------------------------|
| Option 1—full access <sup>1</sup>  | 23.79                     | 116.8                    |
| Option 2—line sharing <sup>1</sup> | 10.03                     | 174.83                   |
| Option 3—bitstream <sup>2</sup>    | 16.23                     | 174.83                   |

*Source*: <sup>1</sup> Covec (2003), 'Pricing of Unbundled Access for New Zealand Commerce Commission', December; <sup>2</sup> OXERA calculations.

It is assumed that these costs are the same for business and residential connections.

On the cost side, the levels of charge discussed above are included for Options 1–3 under designation, with the onset access charge incurred as a per-line cost in the first year of unbundling and the annual charge included in the variable costs per line. These cost levels under designation are 75% of the level included on the cost side under specification.

For Option 4, both the per-tail access and ongoing charges included on the cost side are calculated on a top-down basis, with the level under designation set at 75% of that under specification:

- the wholesale connection charge is assumed to be equal to the one-off retail installation charge (NZ\$[%] TDR)<sup>47</sup> minus 16%,<sup>48</sup> and re-expressed in terms of cost per tail per exchange;
- the ongoing wholesale line rental charge is set at the retail price level minus 16%.<sup>49</sup> Two such charges are calculated—one relating to P<sub>1</sub> and one to P<sub>2</sub>.

These per-tail costs are shown in Table 5.12.

| Table 5.12: Wholesale access (ongoing) and connection charges under |
|---------------------------------------------------------------------|
| designation for Option 4, included in costs                         |

| Option             | Monthly access fee (NZ\$)                   | Connection charge (NZ\$) |
|--------------------|---------------------------------------------|--------------------------|
| Option 4—fixed PDN | [ $\gg$ ] TDR (relative to P <sub>2</sub> ) | 537.6                    |
|                    | [ $\gg$ ] TDR (relative to P <sub>1</sub> ) | 537.6                    |

Source: OXERA calculations.

<sup>&</sup>lt;sup>47</sup> Data received from TCNZ, July 16th 2003.

<sup>&</sup>lt;sup>48</sup> This level was chosen in order to be consistent with the wholesale determination.

<sup>&</sup>lt;sup>49</sup> This level was chosen in order to be consistent with the wholesale determination.

## 5.4.2 Costs of unbundling

Costs incurred as a result of unbundling are:

- backhaul (onset and ongoing);
- tie cables;
- collocation (onset and ongoing);
- switch and infrastructure connectivity;
- DSLAMs;
- TCNZ's costs of OSS;
- regulatory costs.

Each of these must be included in the costs stack that makes up each  $P_2$ . Each must also be included on the cost side as a cost that the entrant will face on entry.

In the case of Option 1, the costs have been estimated assuming that the entrant will take advantage of unbundling in order to provide both voice and data services. Although voice-only customers are supplied solely where the exchange is also unbundled for voice and data services, for modelling purposes data is treated as the incremental service. Each cost element is explained below.

### Backhaul (onset and ongoing)

Onset backhaul costs have been calculated using information supplied by TelstraClear (Table 5.13).<sup>50</sup> The TelstraClear information is based on experience of the cost of laying fibre from TelstraClear's network to TCNZ's exchange. These cost figures apply in the provision of data and voice services.

| Type of ESA | NZ\$    |
|-------------|---------|
| Metro       | 10,000  |
| Urban       | 140,000 |
| Suburban    | 285,000 |
| Rural       | 510,000 |

### Table 5.13: Backhaul set-up costs—Option 1, voice and data (NZ\$)

*Source*: OXERA calculations, based on information supplied by TelstraClear.

Onset backhaul costs for Option 2 (line sharing) are assumed to be 95% of this level, since there are no voice costs to include. Onset backhaul costs for bitstream (Option 3) are assumed to be 50% of the line-sharing level, since the entrant is buying a service that will include backhaul to the first point of interconnection. The costs for Option 4 are set at 40% over the level for Option 3. These cost levels are shown in Table 5.14.

<sup>&</sup>lt;sup>50</sup> Response received from TelstraClear, 'TelstraClear Build Costs to Telecom ESAs', November 17th 2003.

| Type of ESA | Option 2 | Option 3 | Option 4 |
|-------------|----------|----------|----------|
| Metro       | 9,500    | 4,750    | 6,650    |
| Suburban    | 270,750  | 135,375  | 189,525  |
| Urban       | 133,000  | 66,500   | 93,100   |
| Rural       | 484,500  | 242,250  | 339,150  |

# Table 5.14: Onset backhaul costs (specification and designation)for Options 1–4 (NZ\$)

Source: OXERA calculations.

An annual cost per connection for inclusion in the bottom-up price is derived by calculating a weighted average cost per ESA based on the average number of potential broadband lines by type of ESA. The weights are: metro ( $[\times]$  TDR %), urban ( $[\times]$  TDR %), suburban ( $[\times]$  TDR %), and rural ( $[\times]$  TDR %).

This is then converted to a per-connection cost based on 1,000 connections per exchange, amortised over an expected economic life of 20 years. The expected economic life is based both on experience from other jurisdictions (as considered by consultants, ICC), and on evidence submitted at the Conference.

For residential customers, this results in NZ\$9.6 per connection per year for Option 1; NZ\$9.1 per connection per year for Option 2; and NZ\$4.5 per connection per year for Option 3. The costs are assumed to be 30% higher for business connections.

Ongoing backhaul costs are included on the cost side for Options 1–4, calculated as 1% of onset backhaul costs. This is converted into a per-connection cost for the bottom-up prices of Options 1–3 using the same methodology as outlined above.

### Tie cables

Tie cables costs are set at between NZ\$500 and NZ\$2,000 per exchange.

For Options 1 and 2, a per-line cost for the bottom-up price is derived by calculating a weighted average cost per exchange, calibrated using 1,000 lines per exchange and amortising over 15 years. This amounts to less than NZ\$1 per subscriber per year. The per-connection cost for Option 3 is 50% of this level.

## Collocation (onset and ongoing)

Collocation costs refer to the costs of establishing, on an ongoing basis, telehousing space in an existing exchange, and as such is only relevant to Options 1, 2 and 4. The level of costs included in Option 4 is set at 50% of the level included for the other two options, as the Commission advised that less space is likely to be needed.

Cost information has been supplied by TCNZ.<sup>51</sup> The costs include provision of seismic frames and cable trays, fire protection, air conditioning, power, project management and contingency allowance, and have been calculated for a two-bay co-mingling area consisting of three rack shelves.

Based on 1,000 lines, the total set-up cost is NZ[%] TDR, or NZ[%] TDR per line per year, assuming a ten-year life. This is the level of onset cost that has been included in the bottom-up prices for Options 1 and 2.

The total cost per line is aggregated up to give a total set-up cost at the level of the ESA by multiplying through by the average number of broadband lines an entrant is assumed to achieve, by type of ESA. Table 5.15 shows the level of costs under designation for Options 1, 2 and 4.

| Type of ESA | Options 1 and 2 (NZ\$) | Option 4 (NZ\$) |
|-------------|------------------------|-----------------|
| Metro       | [ <i>外</i> ] TDR       | [X] TDR         |
| Urban       | [ <i>》</i> ] TDR       | [X] TDR         |
| Suburban    | [ <i>》</i> ] TDR       | [X] TDR         |
| Rural       | [×] TDR                | [X] TDR         |

| Table 5.15: Collocation set-up costs under designation, | Options 1, 2 and 4 (NZ\$) |
|---------------------------------------------------------|---------------------------|
|---------------------------------------------------------|---------------------------|

Source: OXERA calculations, based on information supplied by TCNZ

The costs in Table 5.15 are based on a linear relationship between collocation costs and lines as the number of lines increases (or decreases). There may be economies of scale which would suggest that the per-line cost would fall as the number of lines increases, and diseconomies of scale that increase the per-line cost for fewer than 1,000 lines. However, the modelled approach could be considered conservative, as it overstates the costs in exchanges that are most likely to be subject to entry (metro, urban and possibly suburban), and understates them in exchanges where entry is least likely to occur (rural).

It was therefore considered that the assumption of linearity in the collocation costs was unlikely to overstate the welfare benefits, and so the approach laid out above was adopted.

It has been assumed that the estimation supplied by TCNZ would apply in the designation scenario and that costs under specification would be higher. To reflect this, designated costs are set at 75% of specified costs.

Ongoing collocation costs are also included, to account for the rental of space and running costs such as electricity. Based on information supplied by TelstraClear,<sup>52</sup> space

<sup>&</sup>lt;sup>51</sup> Data received from TCNZ, and supplied to OXERA by the Commission on November 28th 2003.

<sup>&</sup>lt;sup>52</sup> Data received from TelstraClear, and supplied to OXERA by the Commission on November 28th 2003.

rental for two bays would amount to NZ\$[%] TelstraClearDR per year, and annual power costs would be NZ\$[%] TelstraClearDR. These costs are based on 1,000 lines; hence, a per-line cost is derived by dividing by 1,000, to give NZ\$[%] TelstraClearDR, included in the bottom-up prices for Options 1 and 2.

As for total collocation set-up costs, the total per-line cost is aggregated up to give a total set-up cost at the level of the ESA by multiplying through by the average number of broadband lines an entrant is assumed to achieve, by type of ESA. Table 5.16 shows the level of costs, which are assumed equal under designation and specification.

| Type of ESA | Options 1 and 2 (NZ\$)         | Option 4 (NZ\$)       |
|-------------|--------------------------------|-----------------------|
| Metro       | [ <i>≫</i> ]<br>TelstraClearDR | [≯]<br>TelstraClearDR |
| Urban       | [≯]<br>TelstraClearDR          | [≯]<br>TelstraClearDR |
| Suburban    | [≯]<br>TelstraClearDR          | [≯]<br>TelstraClearDR |
| Rural       | [≫]<br>TelstraClearDR          | [⊁]<br>TelstraClearDR |

| Table 5.16: Annual collocation costs for both | designation and specification (NZ | \$) |
|-----------------------------------------------|-----------------------------------|-----|
|-----------------------------------------------|-----------------------------------|-----|

Source: OXERA calculations, based on information supplied by TCNZ.

#### Switch and infrastructure connectivity

These costs are relevant to Options 1-3, for both data services and for voice services. There are assumed to be no common costs between them.

For Option 1 only, the provision of voice services would require the entrant to install switches and infrastructure connectivity. Based on experience in other jurisdictions, as considered by ICC, this cost has been estimated at NZ\$2m per 2,000 connections. The figure has been converted into a per-connection cost on the basis of an amortisation over an expected economic life of ten years. This gives a figure of NZ\$100 for inclusion in the bottom-up price for Option 1 for residential consumers. The figure is assumed to be 30% higher for business customers.<sup>53</sup>

The total set-up cost at the level of the ESA is obtained by multiplying through by the average number of voice lines an entrant is assumed to achieve, by type of ESA. Table 5.17 shows the level of cost this implies. It also shows the switch and infrastructure costs incurred on the data side for Options 1–3. Data services require the installation of data traffic aggregation equipment at the entrant's point of interconnection. The provision of Internet-grade services has been estimated to cost NZ\$154,000 for up to ten ESAs.<sup>54</sup> The

 $<sup>^{53}</sup>$  It is acknowledged that there may be economies of scale and therefore the relationship between costs of the switch and number of lines may not be linear.

<sup>&</sup>lt;sup>54</sup> Estimate provided by the Commission.

per-ESA cost is therefore calculated at NZ\$15,400, and the per-line cost is derived by amortising over ten years and calibrating at 1,000 connections. This gives NZ\$1.54, which is included in the bottom-up prices for Options 1–3.

# Table 5.17: Switch and infrastructure connectivity costs— specification and designation (NZ\$)

| Type of ESA | Option 1—voice costs | Options 1–3—data costs |
|-------------|----------------------|------------------------|
| Metro       | 6,021,280            | 15,400                 |
| Urban       | 528,797              | 15,400                 |
| Suburban    | 2,051,926            | 15,400                 |
| Rural       | 56,445               | 15,400                 |

Source: OXERA calculations.

#### DSLAMs

DSLAM costs are relevant to Options 1–3, although the costs included at the level of the ESA and in the bottom-up prices for Option 3 have a slightly different basis. DSLAM costs are included in Option 3 as part of the ongoing wholesale charge and have been discussed already (see section 5.4.1).

For Options 1 and 2, investment in DSLAMs is required on the part of the potential entrant. The fixed costs of installing DSLAMs for data services depend on the number of connections per exchange, as supplied by TCNZ. TCNZ also provided DSLAM node capital costs, depending on the number of connections.<sup>55</sup> These costs have been revised downwards since the draft report, to reflect a reasonable estimation of DSLAM costs based on market information and data supplied to the Commission by interested parties. Table 5.18 shows the level of cost included in the model, depending on the number of connections.

| Number of connections | Cost (NZ\$)        |
|-----------------------|--------------------|
| 80                    | [≯]CDR             |
| 160                   | [≯] CDR            |
| 500                   | [×] CDR            |
| 1,000                 | [≯] CDR            |
| 2,000                 | [》] CDR<br>[》] CDR |
| 3,000                 | [≯] CDR            |

The model chooses the size of DSLAM that is required to serve the expected number of subscribers over a two-year investment cycle—ie, every two years after the initial

<sup>55</sup> Data received from TCNZ, August 8th 2003.

upgrade of the ESA, it checks whether a new DSLAM is necessary to cope with the expected demand for the subsequent two years. In this way, an investment is only made as the need arises. There is no difference between specification and designation.

These costs are converted into a per-connection cost by assuming an average of 1,000 connections. The resulting cost is NZ\$[%] CDR per connection, which is amortised over an expected economic life of five years (based upon submissions made at the Conference). This is down from NZ\$[%] TDR in the draft report.

It is assumed that these costs are the same for residential and business connections, and, furthermore, that the capital costs of the DSLAMs remain the same in the provision of data-only services, and combined data and voice services.

For Option 4, NZ\$500 has been included in the fixed costs per line to account for the cost of multiplexing equipment.

### TCNZ's OSS costs

The level of OSS costs to be recovered is discussed above under specification in section 5.3. As mentioned in specification, the level of OSS costs included depends on whether the scenario is 'low', 'central' or 'high'.

Costs of NZ $[\mathscr{H}]$  CDR per connection are included in the bottom-up price under designation, and are included as part of the variable per-line charge on the cost side.

### Regulatory costs

The issues related to costs of regulation are also set out in section 5.3, as these form part of the costs that must be added back under specification, although only 50% is added back under specification; 100% is included under designation. These costs are included on the cost side as part of the variable per-line charge.

Costs of NZ $[\mathscr{H}]$  CDR per connection are included in the bottom-up price under designation, and are included as part of the variable per-line charge on the cost side.

## 5.4.3 Other costs

Other costs include core network OPEX, marketing, ISP and local calling costs.

### Core network OPEX

The estimation of the core network operating costs has been based on BT's regulatory accounts for the year 2002, because no disaggregated information between network and non-network elements for TCNZ and TelstraClear was available.

The approach adopted is as follows: the proportion of network OPEX over total OPEX of BT's wireline business (ie, Network, Retail Narrowband Access business, and Retail

Systems business) is estimated.<sup>56</sup> The total OPEX for the wireline business excludes notional payments from BT Network. This results in a proportion of 11.6%, which is applied to TCNZ's total OPEX (NZ\$1,214m) for the wireline business, as contained in TCNZ's Annual Report for the year ended June 30th 2002. This gives an estimated NZ\$141.1m for an entrant's core network OPEX.

For Option 1, the headline per-connection cost used is NZ\$83, derived by dividing the total figure by the number of TCNZ access lines at the end of June 2002, estimated at 1.7m. The cost per business connection is set at NZ\$91, since more network capacity may be required for business connections.

The per-connection charge for Options 2 and 3 is set at NZ\$70 for residential customers, to reflect the fact that no voice services are included. The business cost is NZ\$91.

These costs are aggregated up to the level of the ESA by multiplying by the average number of broadband lines that an entrant might expect to unbundle over the CBA, by type of ESA. The costs for Option 4 are set at the same level as for Options 2 and 3. These costs are show in Table 5.19.

| Type of ESA | Option 1 (NZ\$) | Options 2–4 (NZ\$) |
|-------------|-----------------|--------------------|
| Metro       | 441,939         | 372,734            |
| Urban       | 38,812          | 32,734             |
| Suburban    | 150,603         | 127,020            |
| Rural       | 4,143           | 3,494              |

Table 5.19: Annual core network OPEX costs—designation and specification

Source: OXERA calculations.

### Marketing costs

Marketing and customer-service costs for voice and data services combined (ie, Option 1) have been estimated at NZ\$60 per residential connection. It is assumed that there would also be some marketing activity undertaken by the ISP, hence this allocation does not account for the entire marketing spend per connection. These costs are reduced to NZ\$40 for residential connections under Options 2 and 3.

In all cases, marketing costs for business connections are assumed to cost 30% more than residential connections.

The same level of cost is included on the cost side in the variable per-connection cost.

For Option 4, NZ\$52 is included in the variable per-connection costs.

<sup>&</sup>lt;sup>56</sup> The categories included in the network OPEX are main and digital junction switch; local to remote transmission (link and length); local to tandem transmission; tandem to tandem transmission; product management; interconnect connections; and data services.

#### ISP services

It has been assumed that the provision of ISP services is already competitive. Thus, the retail price of these services includes only a return on investment. Accordingly, the costs of providing the services are set at the same level as the retail price—ie, for residential services, the entrant incurs NZ\$120 of annual cost; and, for business, NZ\$214. This is a conservative assumption, as it does not allow any contribution from ISP services to support the entry decision.

This level of cost is included in the bottom-up price and as part of the variable per-line connection cost on the cost side.

#### Local calling

Costs and revenues associated with local calling are only relevant to the provision of voice services to business customers in Option 1. As local call charges are excluded from the voice access price for business customers, a representative revenue allocation (as described in section 5.2.1) has been included in the calculation of the bottom-up price for designation. The revenue included in this price is based on a top-down calculation in the same way as prices are derived under specification, with an assumed 15% reduction in profitability. This gives a level of NZ\$202.

On the cost side, the costs are included in core network OPEX.

### 5.4.4 Summary—final prices under designation

Table 5.20 presents the resulting prices for the bundled voice and data product under designation. As in the specification scenario,  $P_1$  under designation is assumed to be 10% higher than  $P_2$ . For purposes of comparison, the table also presents the value of  $P_0$ , which would prevail if no entry occurs under designation, and  $P_1$ , the one-firm entry price.

| Price                    | Residential customers | esidential customers Business customers |  |
|--------------------------|-----------------------|-----------------------------------------|--|
|                          | Voice and data        | Voice and data                          |  |
| P <sub>0</sub> —starting | 1,255                 | 2,414                                   |  |
| P <sub>0</sub> —year 5   | 1,044                 | 2,304                                   |  |
| P <sub>2</sub> —year 5   | 829                   | 1,105                                   |  |
| P <sub>1</sub> —year 5   | 900                   | 1,194                                   |  |

Table 5.20: Retail prices under designation (NZ\$ per year)—Option 1

Source: OXERA calculations.

Table 5.21 presents the resulting prices for line sharing under designation, together with  $P_0$  and  $P_1$ .

| Price                    | Residential customers | Business customers |
|--------------------------|-----------------------|--------------------|
| P <sub>0</sub> —starting | 783                   | 1,428              |
| P <sub>0</sub> —year 5   | 596                   | 1,368              |
| P <sub>2</sub> —year 5   | 523                   | 607                |
| P <sub>1</sub> —year 5   | 564                   | 646                |

Source: OXERA calculations.

Table 5.22 presents the resulting prices for Option 3 under designation.

| Price                    | Residential customers | Business customers |
|--------------------------|-----------------------|--------------------|
| P <sub>0</sub> —starting | 783                   | 1,428              |
| P <sub>0</sub> —year 5   | 596                   | 1,368              |
| P <sub>2</sub> —year 5   | 512                   | 602                |
| P <sub>1</sub> —year 5   | 551                   | 640                |

Table 5.22: Retail prices under designation—Option 3 (NZ\$ per year)

Source: OXERA calculations.

A summary of prices for the unbundling of Option 4 (fixed PDN) is provided in Table 5.10.

## 5.4.5 Summary—costs in each option

Table 5.23 provides a summary of all the costs that enter the NPV decision on the cost side.

|                            | Option 1: Full L  | LU                   | Option 2: Line sh   | aring              | Option 3: Bitstrea | am          | Option 4: Fixed F | PDN         |
|----------------------------|-------------------|----------------------|---------------------|--------------------|--------------------|-------------|-------------------|-------------|
|                            | Specification     | Designation          | Specification       | Designation        | Specification      | Designation | Specification     | Designation |
| Data set-up cost           | s—collocation cos | sts, backhaul, tie o | cables, switch and  | infrastructure con | nnectivity costs   |             |                   |             |
| Metro                      | [》]               | [×]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [≯]         |
| Suburban                   | [》]               | [×]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [》]         |
| Urban                      | [》]               | [×]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [》]         |
| Rural                      | [》]               | [》]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [》]         |
| Voice set-up cos           | sts—backhaul, and | d switch and infra   | structure connecti  | vity costs         |                    |             |                   |             |
| Metro                      | [》]               | [×]                  |                     |                    |                    |             |                   |             |
| Suburban                   | [》]               | [×]                  |                     |                    |                    |             |                   |             |
| Urban                      | [》]               | [×]                  |                     |                    |                    |             |                   |             |
| Rural                      | [》]               | [×]                  |                     |                    |                    |             |                   |             |
| Ongoing costs—             | -core network OPE | X, ongoing collo     | cation and backhau  | ıl                 |                    |             |                   |             |
| Metro                      | [》]               | [×]                  | [》]                 | [》]                | [》]                | [×]         | [》]               | [》]         |
| Suburban                   | [》]               | [×]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [》]         |
| Urban                      | [》]               | [×]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [》]         |
| Rural                      | [》]               | [×]                  | [》]                 | [》]                | [》]                | [》]         | [》]               | [≯]         |
| Fixed costs per I          | ine—wholesale co  | onnection charge     | plus multiplexing t | ransmission equi   | pment (Option 4 on | ly)         |                   |             |
| Data business              | _                 | -                    | [≯]                 | [≯]                | [×]                | [×]         | [≯]               | [×]         |
| Data residential           | -                 | _                    | [》]                 | [》]                | [》]                | [3<]        | [》]               | [≯]         |
| Voice and data business    | [×]               | [×]                  | -                   | -                  | _                  | -           | -                 | -           |
| Voice and data residential | [34]              | [》]                  | _                   | _                  | -                  | _           | _                 | -           |

## Table 5.23: Summary of costs that enter the NPV decision for each option (NZ\$) [Whole Table CDR]

## 

|                             | Option 1: Full LLU |                  | Option 2: Line sh  | Option 2: Line sharing |                     | Option 3: Bitstream |                                      | DN                                   |
|-----------------------------|--------------------|------------------|--------------------|------------------------|---------------------|---------------------|--------------------------------------|--------------------------------------|
|                             | Specification      | Designation      | Specification      | Designation            | Specification       | Designation         | Specification                        | Designation                          |
| Variable costs pe           | er line, pa— whole | sale ongoing acc | ess charge, market | ting, ISP costs, O     | SS costs, regulator | y costs, DSLAM c    | osts (Option 3 only                  | )                                    |
| Data business<br>(PDN only) |                    |                  |                    |                        |                     |                     | [≫] <sup>1</sup><br>[≫] <sup>2</sup> | [×] <sup>1</sup><br>[×] <sup>2</sup> |
| Data business               | [≯]                | [×]              | [≯]                | [≯]                    | [≯]                 | [≯]                 | [×]                                  | [×]                                  |
| Data residential            | [⊁]                | [》]              | [》]                | [34]                   | [×]                 | [×]                 | [》]                                  | [%]                                  |
| Voice business              | [》]                | [×]              | [》]                | [》]                    | [》]                 | [》]                 | [》]                                  | [》]                                  |
| Voice residential           | [》]                | [⊁]              | [》]                | [》]                    | [×]                 | [》]                 | [》]                                  | [》]                                  |

Notes: <sup>1</sup> Calculated on a retail-minus basis, relative to P<sub>1</sub>; <sup>2</sup> Calculated on a retail-minus basis, relative to P<sub>2</sub>.



**OXFORD ECONOMIC RESEARCH ASSOCIATES** 

## NEW ZEALAND COMMERCE COMMISSION

ESTIMATING THE RELATIVE EFFICIENCY OF TELECOM NEW ZEALAND

**DECEMBER 2003** 

Blue Boar Court Alfred Street Oxford OX1 4EH Tel: +44 (0) 1865 253000 Fax: +44 (0) 1865 251172 Email: Enquiries@oxera.co.uk OXERA Consulting Ltd is registered in England, no. 2589629. Registered office: Blue Boar Court, Alfred Street, Oxford OX1 4EH, UK. Although every effort has been made to ensure the accuracy of the material and the integrity of the analysis presented herein, OXERA Consulting Ltd accepts no liability for any actions taken on the basis of its contents.

OXERA Consulting Ltd is not licensed in the conduct of investment business as defined in the Financial Services and Markets Act 2000. Anyone considering a specific investment should consult their own broker or other investment adviser. OXERA Consulting Ltd accepts no liability for any specific investment decision which must be at the investor's own risk.

## **Executive Summary**

This study examines the relative efficiency of Telecom New Zealand (TCNZ), using comparisons with the US local exchange carriers. The analysis in this paper has been carried out in order to provide an input into OXERA's cost–benefit modelling of unbundling TCNZ's local loop network and fixed public data network.

Prior to undertaking the modelling, numerous adjustments were made to the data in order to improve comparability between TCNZ and the US local exchange carriers. However, given the level of adjustments and assumptions required, significant sensitivity testing was also carried out.

The results of this study are derived from employing three higher-level model specifications:

- a comparative-efficiency assessment of operating expenditure (OPEX) only, using stochastic frontier analysis (SFA) and data envelopment analysis (DEA);
- a comparative-efficiency assessment with OPEX and capital expenditure (CAPEX) as two separate inputs, using DEA;
- a comparative-efficiency assessment with 'total cost' measure as the sole input, using SFA and DEA.

A summary of the main results is provided below.

| Model                                                  | Target cost reduction (% pa) |                                                              |  |  |
|--------------------------------------------------------|------------------------------|--------------------------------------------------------------|--|--|
|                                                        | Range                        | Point estimate<br>(based on geometric mean<br>of all models) |  |  |
| SFA model                                              |                              |                                                              |  |  |
| operating costs including marketing                    | 3.4–6.5                      | 4.7                                                          |  |  |
| operating costs excluding marketing                    | 5.0-7.4                      | 6.6                                                          |  |  |
| DEA model                                              |                              |                                                              |  |  |
| operating costs including marketing                    | 5.4-7.5                      | 6.2                                                          |  |  |
| operating costs excluding marketing                    | 7.9–10.2                     | 8.8                                                          |  |  |
| SFA model                                              |                              |                                                              |  |  |
| total costs including marketing                        | 1.1–3.3                      | 2.1                                                          |  |  |
| total costs excluding marketing                        | 1.9–4.7                      | 3.0                                                          |  |  |
| DEA model                                              |                              |                                                              |  |  |
| total costs including marketing                        | 0.3–3.0                      | 1.0                                                          |  |  |
| total costs excluding marketing                        | 1.6–4.2                      | 2.5                                                          |  |  |
| DEA two-input model                                    |                              |                                                              |  |  |
| operating costs including marketing, and capital costs | 0.7–3.2                      | 2.0                                                          |  |  |
| operating costs excluding marketing, and capital costs | 1.4–3.9                      | 2.2                                                          |  |  |

#### Summary results of all models

However, given the difficulties of quantifying CAPEX, OXERA considers that the OPEX specifications are more satisfactory, although the resultant inefficiency range from these models is tempered by the fact that TCNZ performs better on the 'total cost' model specifications. Thus, OXERA considers that a robust estimate for the potential cost reductions for TCNZ ranges between 2.5% and 5% per annum over a five-year period— ie, between the upper end of the resultant ranges from the total cost models and the lower end of the resultant ranges from operating cost models.

This range represents the required savings TCNZ needs to achieve in order to reach efficient performance corresponding to the year 2000 (the year to which the data used in the analysis corresponds). In other words, the above estimate relates to a measure of catch-up or static efficiency. The estimation of the scope for future frontier shift—ie, the potential of the industry to achieve productivity gains over time due to technical and technological advances—was beyond the remit of this study.

This is a public version of the report, from which confidential commercially sensitive information has been removed. Where this has occurred, the relevant text or data has been replaced by square brackets  $[\aleph]$ .

## Contents

| 1.  | Intro   | duction                                                              | 1  |
|-----|---------|----------------------------------------------------------------------|----|
| 2.  | The     | Comparative-efficiency Framework                                     | 3  |
|     | 2.1     | Definition of the measure of efficiency                              | 3  |
|     | 2.2     | The choice of comparators                                            | 3  |
|     | 2.3     | The choice of relevant inputs, outputs and environmental factors     | 4  |
|     | 2.4     | Adjustments to data to improve comparability                         | 5  |
|     | 2.5     | Comparative-efficiency techniques used and validation of the results | 7  |
| 3.  | Sum     | mary of Data Issues                                                  | 8  |
| 4.  | Mod     | elling Results                                                       | 12 |
|     | 4.1     | OPEX                                                                 | 15 |
|     | 4.2     | 'Total cost'—the sum of OPEX and standardised 'depreciation'         | 19 |
| 5.  | Cond    | clusions                                                             | 25 |
| Арр | endix 1 | : Data Used in the Analysis                                          | 27 |
| Арр | endix 2 | : Results                                                            | 50 |

## 1. Introduction

This study examines the relative efficiency of Telecom New Zealand (TCNZ) using comparisons with the US local exchange carriers (LECs). The analysis in this paper has been carried out in support of OXERA's cost-benefit modelling of unbundling TCNZ's local loop and fixed public data network, undertaken for the New Zealand Commerce Commission. This paper should therefore be considered in conjunction with the OXERA paper 'Modelling the Impact of Unbundling the Local Loop and Fixed Public Data Network', and the outputs from the analysis have been used to inform the modelling presented therein.

This paper should be considered as an update of the previous OXERA study commissioned by the New Zealand Commerce Commission dealing with the estimation of TCNZ's relative efficiency.<sup>57</sup>

The remainder of this report is structured as follows:

- section 2 provides a theoretical framework for the implementation of a comparative-efficiency analysis;
- section 3 describes the data used in the analysis;
- section 4 presents the results of the analysis;
- section 5 provides conclusions.

The process adopted in this study for measuring relative efficiency, and thus the outcomes produced, is heavily influenced by the analysis previously submitted by TCNZ. This was mainly due to binding time constraints and the availability (or lack) of detailed cost and operational information for the telecommunications operators used in the analysis (including TCNZ itself). Therefore, where there might be some ambiguity in the data or assumptions used, OXERA has undertaken sensitivity analysis to provide a range of results.

The results of this study represent the required savings TCNZ needs to achieve in order to reach efficient performance corresponding to the year 2000 (the year to which the data used in the analysis corresponds). In other words, they are a measure of static, or cross-industry, efficiency, which is commonly referred in the relevant literature simply as 'efficiency'. (The measure used to describe the distance between a company's current position and the static efficiency frontier is usually referred to as the 'catch-up percentage'.) There is also the concept of dynamic efficiency, or productivity, which relates to improvements in the effectiveness of the inputs-to-outputs transformation process over time, due to technical and technological advances. It is believed that the telecommunications industry can achieve rapid technical and technological progress, and

<sup>&</sup>lt;sup>57</sup> OXERA (2003), 'Efficiency Analysis to Support Cost–Benefit Analysis', a report for the New Zealand Commerce Commission, October 14th 2003, available at http://www.comcom.govt.nz/telecommunications/llu/Appendices14Oct 2003.PDF.

thereby secure large productivity gains. (The measure used to describe the distance from the current frontier to the estimated future frontier is usually referred to as the 'frontier shift'.) To control for these potential productivity gains, a frontier-shift element needs to be estimated and added to the catch-up percentage; however, this was beyond the remit of this study.

Professor Emmanuel Thanassoulis of Aston Business School, one of the leading academics in the field of comparative-efficiency analysis, has kindly provided a peer review of this study, for which OXERA is grateful.

## 2. The Comparative-efficiency Framework

Comparative efficiency has seen widespread application in the regulation of utility companies. The comparative-efficiency analysis in this paper provides an important input into OXERA's cost-benefit modelling of unbundling TCNZ's local loop and fixed public data network, undertaken for the New Zealand Commerce Commission.

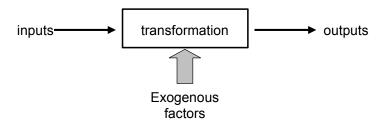
Given the importance of the results of comparative-efficiency analysis, it is crucial for the exercise to be as robust as possible, subject to the nature of the industry examined and the availability of data on possible comparators. To ensure that cost-reduction targets are achievable and not unduly onerous, in several instances OXERA has given TCNZ 'the benefit of the doubt' in possible cost-allocation issues, and has adopted a conservative approach. In other words, where there is some ambiguity, the assumptions that benefit TCNZ are used, rather than potentially more stringent assumptions. Moreover, OXERA has undertaken significant sensitivity analysis.

The general comparative-efficiency framework adopted for this study is summarised below.<sup>58</sup>

## 2.1 Definition of the measure of efficiency

Efficiency analysis can measure efficiency using either physical inputs (ie, number of hours worked, number of switches used, etc) or costs, although the latter is more suitable for regulatory purposes. The required input into the cost–benefit modelling is an estimate of the potential cost reduction that TCNZ can achieve over the next five years, and hence cost efficiency is the focus of this study. The overall aim of the study is to assess the efficiency of TCNZ in providing the services that enable voice or data services to be exchanged over a fixed-line network.

## 2.2 The choice of comparators


Ideally, comparators should be chosen according to the similarity of their activities and the environment in which they operate (both the regulatory and general business environments). In practice, however, the choice of the comparators is usually based on data availability. OXERA has used the same set of comparators as TCNZ's own commissioned study (ie, US LECs), mainly because of data availability, but also because the LECs undertake similar activities to TCNZ, can be considered as operating in a similar business environment, and are at a stage where local-loop unbundling has already been implemented (as a result of the Telecommunications Act 1996). Where activities differ, the data has been adjusted to ensure comparability (see section 3 and Appendix 1 for a full discussion).

<sup>&</sup>lt;sup>58</sup> For a more thorough discussion, see OXERA (2003), 'Efficiency Analysis to Support Cost–Benefit Analysis'.

## 2.3 The choice of relevant inputs, outputs and environmental factors

The choice of the outputs and other factors used in the comparisons is crucial to the results of the analysis. It is also essential that the efficiency assessment provides an appropriate balance between inputs and outputs. Given that the basic function of each unit is to transform a set of *inputs* into a set of *outputs*, the aim of a performance-assessment exercise is to address the issue of the effectiveness with which the unit converts its inputs into outputs, as illustrated in Figure 2.1.





The identification of the appropriate inputs and outputs in an assessment of efficiency is crucial. The measures of inputs used in the assessment exercise should capture all resource and environmental factors that have an impact on the outputs. The measures of outputs used should include all outcomes of the assessed unit.

The choice of the input measure(s) is always a critical issue in an assessment exercise. As discussed above, the input measure(s) should ideally encompass all inputs that enter the production process (ie, number of hours worked, plant used, material consumed, etc). An intuitive way to condense all the inputs used in the production process into a single measure is to use a measure of costs incurred. This should ideally cover both operating expenditure (OPEX), which is usually defined as the costs incurred in the day-to-day running of the business, and capital expenditure (CAPEX), defined here as costs relating to the acquisition, replacement or upgrading of assets. However, there are significant problems with developing a total cost measure—in particular:

- there are definitional problems with CAPEX;
- it is not clear what proportion of CAPEX can be substituted with OPEX (and to what degree). Operational trade-offs may exist between the two types of expenditure (eg, it is argued that there is scope for substituting trenched lines, which require large CAPEX but minimum OPEX for maintenance, with aerial lines, which require smaller CAPEX but are more costly to maintain).<sup>59</sup> However,

<sup>&</sup>lt;sup>59</sup> On the other hand, it is not clear that even such substitution is possible when a network is designed based on optimal network practices. In other words, for a particular part of the network that faces certain topography and customer dispersion, there is no ambiguity as to which is the least-cost solution in the long run. Therefore, a counterargument

the extent of such substitution and the more detailed areas in which it is possible are not easy to assess. To assume that all CAPEX is substitutable with OPEX on a one-to-one basis would be the same as expecting, for example, the acquisition of land worth \$100,000 to be able to lower labour costs for maintenance teams by the same amount. Therefore, a total cost measure derived by the sum of OPEX and all CAPEX could be considered theoretically unacceptable.

In addition to the theoretical considerations above, a comparative-efficiency analysis could be hampered by the lack of an appropriate measure of CAPEX or the lack of available data that could be used to construct such a measure. The analysis undertaken in this study had to address this issue as well (for a more detailed discussion, refer to section A1.2). Therefore, in the interests of accuracy and equity, this study focuses on OPEX, although sensitivity analysis is also undertaken using a measure of 'total costs' so that the final efficiency estimate produced would provide a holistic indication of TCNZ's performance.

With regard to the likely outputs and environmental factors to be considered, OXERA has examined previous studies of efficiency in telecommunications in order to identify the potential outputs and environmental factors to be included, and has then undertaken a general-to-specific modelling approach to identify a smaller subset of statistically significant cost drivers.

Furthermore, in principle, the inputs chosen should have the characteristics of *exclusivity and exhaustiveness*, in that only the inputs considered in the analysis influence the output levels, and their influence is restricted to the output factors considered in the analysis. However, this was not possible in the analysis undertaken for this study owing to TCNZ providing an extended set of services compared with the LECs (covering international call and data services, mobile services, and a higher proportion of long-distance call and data services). Therefore, the analysis assumes complete cost separability between activities, although this assumption is unlikely to be true. Further discussion on this issue can be found in Appendix 1.

## 2.4 Adjustments to data to improve comparability

Adjustments are sometimes necessary to ensure that like-for-like comparisons are made, especially when international comparators are used. Data inconsistencies are usually caused by:

- differences in activities undertaken by the comparator units;
- differences in adopted accounting methods; and
- different definitions of control variables.

could be that, although this operational substitution may be possible, in an environment that does not offer perverse incentives for network design, these decisions are clear-cut.

For operating costs, it is the first issue that requires most careful consideration. In particular, there are many cases in which there are substantial differences between which costs should be included in OPEX, and which in CAPEX, especially when some of the comparators undertake additional functions—as is the case with international calls in this analysis. As a general principle, OXERA has looked at previous studies using LEC data for comparison purposes, examined the cost data categories carefully, together with their definitions (where available), and made the necessary adjustments to ensure comparability as far as possible (for details, refer to section 3 and Appendix 1).

The second issue relates mostly to the definition of CAPEX. For the purposes of a comparative-efficiency assessment, CAPEX should represent the amount of capitalised resources that are consumed within the time period examined in order to produce, or facilitate the production of, a company's outputs. However, since an asset has a useful life beyond a reporting year—which, in this case, is the timeframe of the analysis—a method is needed that robustly quantifies the proportion of the total value of the asset that is 'consumed' in a year. This reduction in value is usually represented by the companies' depreciation expenditure. However, depreciation, as reported in companies' accounts, is an accounting construct, not an economic one, in that a company is allowed significant leeway in predetermining the methodology used for depreciating assets, which is usually determined by that company's need for future CAPEX. Rather, in a cost-assessment exercise, the **economic** notion of depreciation needs to be used, which captures the capital consumption observed in the timeframe of the analysis.

Although a measure of economic depreciation would be the theoretically correct supplementary (to OPEX) cost measure for the assessment exercise, in reality it is very difficult to gather data to construct such a measure. Therefore, the analysis needs to resort to using the accounting definition of depreciation. This, in turn, presents two difficulties.

- CAPEX represents investments in assets that could have very long useful lives particularly in the case of network industries, where some components (eg, buried cable) can be more than 50 years old. In using the depreciation value of such assets, the analysis implicitly allows the efficiency estimate produced to be influenced by investment decisions taken more than half a century ago.
- The result of allowing a company leeway to set its own depreciation profiles could be that the company's depreciation values have little to do with the assets that are used in the production process. A company that adopts an aggressive depreciation policy could feasibly have most of its older assets written off, but these would continue to contribute to the production process.

To overcome these difficulties, the depreciation measure used needs to be based on the replacement value of the asset base and to be derived by applying a consistent depreciation methodology across the comparator companies. The replacement value of each comparator's asset base would also need to be derived using a consistent methodology. This is the methodology that was attempted for this study. Unfortunately, the methodology to derive the replacement values of each company's asset base requires such extensive assumptions that the resulting asset base cannot be considered a robust representation of a company's capital inputs. Thus, the focus of the analysis in this study is the assessment of efficient levels of OPEX; nevertheless, although unsatisfactory, the depreciation measure constructed is used to undertake extensive sensitivity analysis. This sensitivity analysis aids in narrowing the range of the

produced OPEX efficiency estimates to derive a measure of 'total cost' efficiency. A more thorough discussion on this subject can be found in Appendix 1.

Where international comparisons are used, some additional standardisation processes are required. Relative differences in input prices, such as wage rates, may create problems in distinguishing between substitution effects and inefficiency. This problem could be resolved by standardising costs to a base currency using a producer purchasing parity (PPP) index. However, the accuracy and overall robustness of PPP measures is sometimes doubtful. Thus, where there are significant differences in input prices, best practice recommends their inclusion as environmental factors in the modelling. Information on price levels was not available for this analysis and thus a combination of the US–New Zealand PPP index and the US–New Zealand exchange rate was used instead. More details are provided in Appendix 1.

## 2.5 Comparative-efficiency techniques used and validation of the results

This is one of the most important steps, as it will determine the robustness of the final estimates and whether they can be used for regulatory purposes.

Each comparative-efficiency technique has its own requirements and idiosyncrasies. In general, no one technique is superior to any other. As such, the results of this study are based on a number of alternative modelling approaches, including stochastic frontier analysis (SFA) and data envelopment analysis (DEA). For the econometric modelling (ie, SFA), the analysis has used a general-to-specific approach, which is considered best practice in identifying statistically robust models. Furthermore, statistical diagnostic testing, combined with outlier analysis, was undertaken in each stage of the process in order to ensure the robustness of the developed models. Finally, every model was examined to make certain that it predicts intuitively signed and sized relationships between costs and cost drivers.

In summary, the results of this study are derived from employing three higher-level model specifications (although extensive sensitivity analysis has been implemented for each category as well):

- a comparative-efficiency assessment of OPEX only, using SFA and DEA;
- a comparative-efficiency assessment with OPEX and CAPEX as two separate inputs, using DEA;
- a comparative-efficiency assessment of a 'total cost' measure as the sole input, using SFA and DEA.

However, given the difficulties of quantifying CAPEX, OXERA considers that the first specification is the more satisfactory, and thus the final results of this study are more heavily influenced by the results of this approach.

## 3. Summary of Data Issues

This section summarises the main data issues and data adjustments undertaken by OXERA (further details of which are provided in Appendix 1).

The data relating to the LECs used in this study relates to the 2000 reporting period and was sourced from the Federal Communications Commission's website. The data relating to TCNZ was provided by the company, and was based originally on a comparative-efficiency analysis commissioned by TCNZ. This section summarises the items where major changes have been made to the cost and operational data with respects to TCNZ's earlier comparative-efficiency study. A more complete discussion on the treatment used to arrive at cost and operational data used in the analysis can be found in Appendix 1.

## 3.1 Cost data adjustments

## 3.1.1 Cost data adjustments for the LECs

A small number of cost categories have been excluded from the LECs' operating cost base in order to ensure comparability with each other and TCNZ—see below.

#### 6310 Information Origination/Termination Expenses

The cost data supplied by TCNZ excluded a category of costs termed CPE (customer premises equipment), which is the equivalent of the Information Origination/Termination Expenses found in the LEC accounts.

#### 6622 Number Services

This is a sub-category of the Services account that contains costs associated with the provision of customer number and classified listings. The reason for its exclusion was comparability with TCNZ's operating cost base, which excluded costs relating to the provision of directory services, and because the full details of this account for TCNZ were unknown.

#### 6540 Access expenses

This account was excluded from the analysis on the grounds that access costs, which are referred to in New Zealand as interconnect costs, represent rental payments made by the telecommunications operator in question to another operator for access to its network. Given that interconnection charges relate to other operators' costs, and include a profit element, they should be considered as uncontrollable costs and thus removed from the analysis.

#### 6790 Provision for Uncollectible Notes Receivable

This account relates to a provision for 'doubtful debts' (also known as 'bad debts'). This account was excluded from the analysis on the basis that its size depends on regulatory decisions and the accounting systems adopted by the operators (which could also be determined by the regulator).

#### 6610 Marketing

This account is excluded from the operating cost base of the LECs as a form of sensitivity analysis.

## 3.1.2 Cost data adjustments for TCNZ

As with the treatment applied to the cost base of the LECs, a number of cost items have been excluded for the cost base of TCNZ in order to ensure comparability with the LECs. Given that TCNZ undertakes a wider range of activities than its US counterparts, the costs adjustments implemented for this company are more extensive.

#### Network OPEX—access/local

Discussions with TCNZ revealed that this cost category included out-payments relating to interconnection charges for local calls and toll bypass calls. According to OXERA's treatment of access costs, and to maintain comparability with the LECs, these items were removed from TCNZ's cost base.

#### Network OPEX—other data

LECs provide a wide range of data services, including both ISDN and xDSL (ie, highspeed services). Therefore, to maintain comparability, this cost category is also included in TCNZ's cost base in OXERA's analysis.

#### Network OPEX-other services, mobile, directory etc

The treatment adopted in this analysis is based on the proportion of costs relating to the same category found in the Sales and Services OPEX, for which more disaggregated information was available. Thus, approximately [ $\gg$ ] of the total 'Other services, mobile, directory etc.' account is included in TCNZ's cost base.

#### Sales and services OPEX-national

The existence of intra-LATA<sup>60</sup> calls implies that the complete exclusion of sales and marketing costs and billing costs relating to TCNZ's national calls, as suggested by the company, is not appropriate. The treatment adopted for this analysis is to include a proportion of the excluded costs equal to the proportion of intra-LATA calls to all long-distance calls handled by the LECs (ie, the sum of intra-LATA and inter-LATA calls). This proportion was estimated US-wide to be 15.25%.

Given that this adjustment may not be very accurate, OXERA also undertook sensitivity analysis in the modelling stage of this study by using two definitions of OPEX. The first includes all sales and marketing costs for the LECs and the above proportion of the relevant costs for TCNZ, while the second excludes such costs from the LECs' cost base and excludes the available values for national sales, marketing and billing expenses from TCNZ's operating cost base.

#### Sales and services OPEX—other data

As discussed above, LECs provide a wide range of data services. Therefore, in OXERA's analysis, this cost category is included the operating cost base of TCNZ.

<sup>&</sup>lt;sup>60</sup> LATA is defined as local access and transmission area and denotes the geographical area where a certain LEC is allowed to provide telephony services.

## Sales and services OPEX—Other services, mobile, directory etc

Included in this category are a number of items that TCNZ suggested should be excluded. However, it would make intuitive sense that costs for securing interconnect revenue and other revenue as well as error product accounts are also incurred by the LECs; therefore these costs are included in the analysis.

## 3.2 Capital expenditure

As discussed in section 2, a possible CAPEX measure could be standardised depreciation, based on standardised asset replacement values and a uniform depreciation profile for each asset category. This study made use of the asset valuation methodology that was proposed by TCNZ.

Because the relevant data is not available for the LECs, TCNZ, in its original study, applied its own average asset age to the formula used to convert the LEC asset values. However, this assumption will introduce bias into the analysis. For example, if a LEC has an asset base that is older than TCNZ, the LEC's standardised depreciation measure will be overstated and thus its inefficiency estimate overstated. (The reverse holds for LECs with asset bases that are newer than TCNZ.) Nevertheless, despite the limitations of the constructed standardised 'depreciation' measure, sensitivity analysis is undertaken in this study that incorporates this measure into the cost base.

## 3.3 Outputs and environmental factors

## 3.3.1 Access lines

One category of leased access lines (64k-equivalent intra-LATA leased lines) is not reported by the LECs. Although a figure could be estimated based on the revenue received for the provision of leased-line access, the analysis in this study assumes that no LEC provides local private-line services, an assumption that will be beneficial to TCNZ's final efficiency estimate since it reduces the produced output of its comparators.

## 3.3.2 Number of calls

The number of local calls the LECs report include both answered and unanswered calls, while the equivalent figure available for TCNZ includes only answered calls. Therefore, it is necessary to scale down the LEC figures. Since no estimate of the percentage of answered calls was available for the LECs, the percentage of such calls from TCNZ (76%) was used instead.

## 3.3.3 Call minutes

The number of call minutes is not available for the LECs and had therefore to be constructed based on estimates of average call duration by type for the whole of the USA. Given that the call-minute measure was constructed, some sensitivity analysis was undertaken to determine the effects of assuming a different set of average call-duration estimates. (The alternative average-call duration estimates were constructed based on the average-call durations used for TCNZ.)

In addition, some calls are operationally more complex than others. The general approach to account for this is to convert call minutes into switch minutes, which take into account the number of switches through which a call passes. The conversion involves multiplying call minutes by a routing factor specific to each call type (supplied directly by TCNZ).

## 3.3.4 Length of sheath

One factor that tends to affect the costs of all network companies is customer density and dispersion, or customer sparsity. This is often captured in comparative-efficiency studies by using a measure of network length by customer served. In this study the measure used is the length of sheath per access line.

## 3.3.5 Other environmental factors

The analysis also considers the statistical validity of the length of the local loop and the proportion of business to residential users.

## 4. Modelling Results

This section summarises the results of OXERA's modelling, providing an overview of the models used, their specification, an indication of their statistical robustness, and the efficiency estimate they produce for TCNZ. The estimation techniques used for this analysis were SFA and DEA. Most of the data employed at the modelling stage is constructed using a number of assumptions, and thus their level of accuracy is uncertain; therefore, more weight should be placed on the results of the SFA models, given the technique's robustness to situations where there is uncertainty regarding data accuracy.

The adoption of SFA does not resolve the issue of data accuracy, but does mitigate it. Therefore, for the analysis to produce results that could be considered robust under the current uncertainty surrounding the data employed, extensive sensitivity analysis is undertaken. In total, the analysis uses no fewer than 17 SFA models, with each adopting three distributional specifications for the inefficiency component (only the specifications considered to be robust are counted here). The analysis also examined 24 DEA models, each of which produces efficiency estimates under a constant returns to scale (CRS) and a variable returns to scale (VRS) assumption, or an unconstrained and constrained CRS specification (for the models that use two separate inputs). The models are summarised below.

- Models using OPEX as the sole input estimated using SFA and DEA, with sensitivity analysis undertaken:
  - for the definition of OPEX (including and excluding marketing costs, as defined in section 3.1.2 and A1.1.2); and
  - the use of an alternative quantification methodology of LEC switched minutes (as presented in sections 3.3 and A1.3).
- Models using the constructed measure of 'total costs' (ie, the sum of OPEX and the constructed standardised 'depreciation' measure) as the sole input estimated using SFA and DEA, with sensitivity analysis undertaken:
  - for the definition of OPEX (including and excluding marketing costs, as defined in section 3.1.2 and A1.1.2); and
  - the use of an alternative quantification methodology of LEC switched minutes (as presented in sections 3.3 and A1.3).
- Models using OPEX and the constructed standardised 'depreciation' measure as separate inputs estimated using DEA, with sensitivity analysis undertaken:
  - for the definition of OPEX (including and excluding marketing costs as defined in section 3.1.2 and A1.1.2); and
  - the use of an alternative quantification methodology of LEC switched minutes (as presented in sections 3.3 and A1.3).

## Model specification for the econometric (SFA) models

All econometric (SFA) models were developed using general-to-specific modelling. This approach begins with a general model that includes all the variables deemed by the researcher to be potentially significant, and starts removing, one at a time, those found to

be statistically insignificant; the model is then re-estimated. This process is repeated until all variables remaining in the model are deemed to be statistically significant. During every step of the procedure, additional testing is undertaken to ensure that the models produced do not suffer from know statistical maladies that could affect the accuracy of the results (ie, heteroscedasticity, mis-specification, etc); outlier analysis is also implemented at each step to ensure that no single observation, or small group of observations, 'drives' (has an unduly large influence on the) estimated model parameters.

For each SFA model:

- two functional forms were examined—a Cobb–Douglas function and a more general translog cost function (the former being a more restricted version of the latter);
- three alternative distributional assumptions were used for the inefficiency term in the SFA models—a half-normal, truncated normal and exponential distribution.

All the econometric models used in the analysis are presented in detail in Appendix 2.

#### Model specification for the non-parametric (DEA) models

The DEA models were based on the developed econometric models—ie, access lines and switch minutes, the two main output measures, were used. For the DEA models:

- both CRS and VRS models were examined for the specifications that make use of a single input (ie, OPEX or a measure of 'total costs');
- that employ as separate inputs OPEX and the standardised 'depreciation' measure, only CRS are assumed. This is because, in order for these models to be considered robust, weight restrictions for the standardised 'depreciation' measure are required (see below);
- more complex models were also examined by including the number of business access lines, residential access lines and leased access lines as three separate outputs rather than the total number of access lines. The reason for this disaggregation of access lines is that different mixes of access lines are likely to affect an operator's cost base in different ways (ie, business access lines are likely to be more costly than residential access lines, especially when customer services, product services, sales and marketing are considered in the analysis, as is the case for this study).

In every case, the models adopt an input-minimisation orientation; thus, in the case of the VRS models, the effects of scale are captured by the mix of outputs. The models that use OPEX and the standardised 'depreciation' measure as separate inputs require weight restrictions in order to be considered robust. This is necessary given the way in which DEA works, which is by assigning relative weights to each input and output in order to arrive at aggregate measures of total input and total output, the ratio of which is used to derive an estimate of relative efficiency. The only restriction placed by the unconstrained DEA model is that the weights chosen by a comparator, when applied to the inputs and outputs of another unit, should not result in assessing that unit as more than 100% efficient. Therefore, to maximise its efficiency score when an input orientation is adopted, a unit could place most of the inputs' weight in a single input where it has a low value,

relative to the other comparators, while completely ignoring the others. An example from this analysis can be found in TCNZ, which, when assessed by an unconstrained, multiinput DEA model, in most cases places more than 85% of its relative inputs' weight on the standardised 'depreciation' measure. If no additional constraints are placed on the model, the analysis is arguably inaccurate and inequitable.

The weight restrictions imposed to avoid this situation in effect limit the weight allocation to the standardised 'depreciation' measure, so that the virtual weight assigned to this measure should not exceed the 33% threshold. In other words, when the input weights are multiplied by the input values, the restriction will not permit the total weight of the standardised 'depreciation' to be more that one-third of the total weight of both inputs. This restriction is based on the ratio of the standardised 'depreciation' measure to the sum of OPEX and standardised 'depreciation', which is estimated to be approximately 33%.

#### Key to abbreviations used

The tables presented in the following sections and in Appendix 2 use abbreviations when describing the specifications of the models—see Table 4.1.

| Abbreviation    | Description                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------|
| Outputs         |                                                                                                 |
| lines           | total access lines (sum of switched residential, business and other lines, and leased lines)    |
| swminor         | switched minutes, quantified using aggregate US average call duration (original definition)     |
| swminalt        | switched minutes, quantified using TCNZ's average call duration (alternative definition)        |
| line2           | translog cross-product of total access lines                                                    |
| swminor2        | translog cross-product of switched call minutes (original definition)                           |
| line_swminor    | translog cross-product of total access lines and switched call minutes (original definition)    |
| swminalt2       | translog cross-product of switched call minutes (alternative definition)                        |
| line_swminalt   | translog cross-product of total access lines and switched call minutes (alternative definition) |
| sheath          | length of sheath                                                                                |
| lline_sheath    | translog cross-product of total access lines and length of sheath                               |
| lswminor_sheath | translog cross-product of length of sheath and switched call minutes (original definition)      |
| lines_swbus     | switched business access lines                                                                  |
| line_swres      | switched residential access lines                                                               |
| line_ll         | switched business access lines                                                                  |
| Inputs          |                                                                                                 |
| opexacc         | OPEX including marketing                                                                        |
| opexmrk         | OPEX excluding marketing                                                                        |
| costov          | sum of standardised 'depreciation' and OPEX including marketing                                 |
| costalt         | sum of standardised 'depreciation' and OPEX excluding marketing                                 |
| Source: OXERA   |                                                                                                 |

#### Table 4.1: Abbreviations used

Source: OXERA.

The application of SFA requires all variables included in the model to be presented in their natural logarithmic form. The notation used to distinguish the logarithmic form from

the level form is the addition of l as a prefix to the variable name (eg, the natural logarithm of switched access minutes—original is *lswminor*).

The application of DEA does not require the transformation of any variable; therefore, all inputs and outputs are used in their level form.

## 4.1 OPEX

This section summarises the results from modelling operating costs only. Due to a required assumption on the appropriate proportion of sales and marketing costs relating to national calls to be included in TCNZ's cost base (see section 3.1.2 and above), sensitivity analysis was undertaken using two operating cost definitions: one including all sales and marketing cost for the LECs and a proportion of the national costs of such services for TCNZ (defined as OPEX including marketing costs); and the another excluding all sales and marketing costs for the LECs and all national sales and marketing costs for TCNZ (defined as OPEX including marketing costs).

In the tables that follow in the sub-sections below, specifications deemed not to be as robust as the bulk of those reported are shaded (comments are also included in the main text).

## 4.1.1 OPEX including marketing

## SFA results

Table 4.2 summarises the results of the SFA of operating costs using Cobb–Douglas cost functions. In all models, TCNZ is assessed as being relatively inefficient, with a relative inefficiency score of between 16% and 25%. This would suggest a target cost-reduction range for TCNZ of 3.4–5.7% per annum over five years. (All of the developed models were assessed as robust.)

|      | Distribution     | Outputs          | Inefficiency (%) | Rank | Target cost reduction over<br>five years (% pa) |
|------|------------------|------------------|------------------|------|-------------------------------------------------|
| A1.h | half normal      | llines Iswminor  | 22.5             | 40   | 5.0                                             |
| A1.e | exponential      | llines Iswminor  | 15.8             | 39   | 3.4                                             |
| A1.t | truncated normal | llines Iswminor  | 18.3             | 39   | 4.0                                             |
| A2.h | half normal      | llines Iswminalt | 25.4             | 42   | 5.7                                             |
| A2.e | exponential      | llines Iswminalt | 19.2             | 42   | 4.2                                             |
| A2.t | truncated normal | llines Iswminalt | 21.0             | 42   | 4.6                                             |

 Table 4.2: Results of SFA Cobb–Douglas models

Source: OXERA analysis.

Table 4.3 summarises the results of the SFA of operating costs, using translog cost functions. Models A3.e and A3.h are not as robust as the bulk of the models reported (the SFA specification being valid only at approximately the 25% significance level). Ignoring these two models would suggest a target cost-reduction range for TCNZ of 4.6–6.5% per annum over five years.

|      | Distribution Outputs, excluding cross-product terms |        | Inefficiency (%) | Rank | Target cost reduction over<br>five years (% pa) |      |
|------|-----------------------------------------------------|--------|------------------|------|-------------------------------------------------|------|
| A3.h | half normal                                         | llines | Iswminor         | 14.4 | 35                                              | 3.1  |
| A3.e | exponential                                         | llines | Iswminor         | 7.8  | 34                                              | 1.6  |
| A3.t | truncated normal                                    | llines | Iswminor         | n.a. | n.a.                                            | n.a. |
| A4.h | half normal                                         | llines | Iswminalt        | 28.5 | 44                                              | 6.5  |
| A4.e | exponential                                         | llines | Iswminalt        | 21.2 | 44                                              | 4.6  |
| A4.t | truncated normal                                    | llines | Iswminalt        | 23.0 | 44                                              | 5.1  |

#### Table 4.3: Results of SFA translog cost models

Source: OXERA analysis.

Combining the results from the Cobb-Douglas and translog model specifications leads to an annual cost-reduction target over a five-year period for TCNZ in the range of 3.4–6.5%.

#### **DEA results**

Table 4.4 summarises the results of the DEA of operating costs.

| Returns to scale | Outputs                          |          | Inefficiency (%) | Target cost reduction over<br>five years (% pa) |
|------------------|----------------------------------|----------|------------------|-------------------------------------------------|
| CRS              | lines                            | swminor  | 28.3             | 6.4                                             |
| VRS              | lines                            | swminor  | 25.7             | 5.8                                             |
| CRS              | lines_swbus, line_swres, line_ll | swminor  | 25.4             | 5.7                                             |
| VRS              | lines_swbus, line_swres, line_ll | swminor  | 24.3             | 5.4                                             |
| CRS              | lines                            | swminalt | 32.2             | 7.5                                             |
| VRS              | lines                            | swminalt | 30.0             | 6.9                                             |
| CRS              | lines_swbus, line_swres, line_ll | swminalt | 27.7             | 6.3                                             |
| VRS              | lines_swbus, line_swres, line_ll | swminalt | 26.3             | 5.9                                             |

#### Table 4.4: Results of DEA models

Source: OXERA analysis.

No counterintuitive allocation of weights was detected for TCNZ's outputs in the DEA models presented above. The models also presented fair discriminatory power, with the less discriminatory models assessing approximately 23% of the operators as efficient (the models in question are those using the disaggregated access lines measure based on a VRS assumption). Therefore, all models above can be considered robust. The annual cost-reduction target over a five-year period for TCNZ derived from the single-input, OPEX including marketing, DEA models is in the range of 5.4–7.5%.

## 4.1.2 OPEX excluding marketing

#### SFA results

Table 4.5 summarises the results of the SFA of OPEX excluding marketing using Cobb– Douglas cost functions. In all models, TCNZ is assessed as being relatively inefficient, with an implied target cost-reduction range for TCNZ of 5–7.4% per annum over five years. (All of the developed models were robust.)

|      | Distribution     | Outputs          | Inefficiency (%) | Rank | Target cost reduction over<br>five years (% pa) |
|------|------------------|------------------|------------------|------|-------------------------------------------------|
| B1.h | half normal      | llines Iswminor  | 28.6             | 44   | 6.5                                             |
| B1.e | exponential      | llines Iswminor  | 22.7             | 44   | 5.0                                             |
| B1.t | truncated normal | llines Iswminor  | 25.2             | 44   | 5.6                                             |
| B2.h | half normal      | llines Iswminalt | 32.1             | 45   | 7.4                                             |
| B2.e | exponential      | llines Iswminalt | 27.2             | 45   | 6.2                                             |
| B2.t | truncated normal | llines Iswminalt | 28.8             | 45   | 6.6                                             |

#### Table 4.5: Results of SFA Cobb–Douglas models

Source: OXERA analysis.

Table 4.6 summarises the results of the SFA of operating costs, excluding marketing, using translog cost functions. Models B3.e and B3.h are not as robust as the bulk of the models reported (the SFA specification being valid only at approximately the 30% significance level). Ignoring these two models would suggest a target cost-reduction range for TCNZ of 7.1–7.3% per annum over five years.

#### Table 4.6: Results of SFA translog cost models

|      | Distribution     | •      | its, excluding<br>-product terms | Inefficiency (%) | Rank | Target cost reduction over<br>five years (% pa) |
|------|------------------|--------|----------------------------------|------------------|------|-------------------------------------------------|
| B3.h | half normal      | llines | Iswminor                         | 17.2             | 42   | 3.7                                             |
| B3.e | exponential      | llines | Iswminor                         | 10.0             | 42   | 2.1                                             |
| B3.t | truncated normal | llines | lswminor                         | n.a.             | n.a. | n.a.                                            |
| B4.h | half normal      | llines | Iswminalt                        | 35.0             | 47   | 8.3                                             |
| B4.e | exponential      | llines | Iswminalt                        | 30.6             | 48   | 7.1                                             |
| B4.t | truncated normal | llines | Iswminalt                        | 31.5             | 48   | 7.3                                             |

Source: OXERA analysis.

# Combining the results from the Cobb-Douglas and translog model specifications leads to an annual cost-reduction target over a five-year period for TCNZ in the range of 5–7.4%.

#### **DEA results**

Table 4.7 summarises the results of the DEA of operating costs.

| Returns to scale | Outputs                          |          | Inefficiency (%) | Target cost reduction over<br>five years (% pa) |
|------------------|----------------------------------|----------|------------------|-------------------------------------------------|
| CRS              | lines                            | swminor  | 38.2             | 9.2                                             |
| VRS              | lines                            | swminor  | 35.5             | 8.4                                             |
| CRS              | lines_swbus, line_swres, line_ll | swminor  | 35.1             | 8.3                                             |
| VRS              | lines_swbus, line_swres, line_ll | swminor  | 33.6             | 7.9                                             |
| CRS              | lines                            | swminalt | 41.5             | 10.2                                            |
| VRS              | lines                            | swminalt | 39.6             | 9.6                                             |
| CRS              | lines_swbus, line_swres, line_ll | swminalt | 36.6             | 8.7                                             |
| VRS              | lines_swbus, line_swres, line_ll | swminalt | 34.9             | 8.2                                             |

#### Table 4.7: Results of DEA models

Source: OXERA analysis.

No counterintuitive allocation of weights was detected for TCNZ's outputs in the DEA models presented above. The models also presented fair discriminatory power, with the less discriminatory models assessing approximately 21% of the operators as efficient (the models in question are those that use the disaggregated access lines measure based on a VRS assumption). Therefore, all models above can be considered robust. The annual cost-reduction target over a five-year period for TCNZ derived from the single-input, OPEX including marking, DEA models is in the range of 7.9–10.2%.

## 4.1.3 Summary of the results of the OPEX modelling

Given that international comparisons are being undertaken, and the consequent data comparability uncertainties (as discussed in section 3), OXERA would suggest that more weight is placed on the SFA results of this section, which explicitly take into account noise, such as measurement errors in the data and the exclusion of important cost drivers. As such, by excluding the DEA modelling of operating costs, the OPEX analysis suggest that a possible **cost-reduction target range of 3.4–7.4% pa** when considering individual models, or a **narrower range of 4.7-6.6% pa** based on the point estimates provided for each broader sensitivity category (as summarised in Table 4.8)

| Model                                               | Target cost reduction (% pa) |     |  |  |
|-----------------------------------------------------|------------------------------|-----|--|--|
| SFA model of operating costs including marketing    | 3.4–6.5                      | 4.7 |  |  |
| SFA model of operating costs<br>excluding marketing | 5.0-7.4                      | 6.6 |  |  |
| DEA model of operating costs<br>including marketing | 5.4–7.5                      | 6.2 |  |  |
| DEA model of operating costs<br>excluding marketing | 7.9–10.2                     | 8.8 |  |  |

#### Table 4.8: Summary results of operating cost models

Source: OXERA analysis.

## 4.2 'Total cost'—the sum of OPEX and standardised 'depreciation'

## 4.2.1 'Total cost' including marketing

This section summarises the results of modelling the sum of operating costs including marketing and the standardised 'depreciation' measure.

#### SFA results

Table 4.9 summarises the results of the SFA of 'total costs' (as given by the arithmetic sum of operating costs and a standardised 'depreciation' figure) using Cobb–Douglas cost functions. In every case, TCNZ's efficiency estimate has improved; however, the accuracy of such results is highly suspect, given the standardised 'depreciation' measure lack of intuitive appeal, theoretical justification and accuracy.

Keeping the above caveats in mind, the implied target cost-reduction range for TCNZ is 1.1-2.7% per annum over five years. (All of the developed models were robust.)

|      | Distribution     | Outputs                    | Inefficiency (%) | Rank | Target cost reduction over five years (% pa) |
|------|------------------|----------------------------|------------------|------|----------------------------------------------|
| C1.h | half normal      | llines Iswminor Inshealth  | 12.7             | 17   | 2.7                                          |
| C1.e | exponential      | llines Iswminor Inshealth  | 5.6              | 15   | 1.1                                          |
| C1.t | truncated normal | llines Iswminor Inshealth  | 6.2              | 17   | 1.3                                          |
| C2.h | half normal      | llines Iswminalt Inshealth | 12.8             | 19   | 2.7                                          |
| C2.e | exponential      | llines Iswminalt Inshealth | 6.7              | 18   | 1.4                                          |
| C2.t | truncated normal | llines Iswminalt Inshealth | 12.9             | 19   | 2.7                                          |

#### Table 4.9: Results of SFA Cobb–Douglas models

Source: OXERA analysis.

Table 4.10 summarises the results of the SFA of 'total costs' (as given by the arithmetic sum of operating costs and a standardised depreciation figure), using translog cost functions. TCNZ is ranked somewhat lower on the basis of the translog models compared with the Cobb–Douglas cost function models. The implied target cost-reduction range for TCNZ is 1.5–3.3% per annum over five years. (All of the developed models were robust.)

|      | Distribution     | Outputs, excluding<br>cross-product terms | Inefficiency (%) | Rank | Target cost reduction over<br>five years (% pa) |
|------|------------------|-------------------------------------------|------------------|------|-------------------------------------------------|
| C3.h | half normal      | llines Iswminor                           | 11.9             | 23   | 2.5                                             |
| C3.e | exponential      | llines Iswminor                           | 7.5              | 25   | 1.5                                             |
| C3.t | truncated normal | llines Iswminor                           | n.a.             | n.a. | n.a.                                            |
| C4.h | half normal      | llines Iswminalt                          | 15.5             | 27   | 3.3                                             |
| C4.e | exponential      | llines Iswminalt                          | 10.0             | 31   | 2.1                                             |
| C4.t | truncated normal | llines Iswminalt                          | 15.7             | 27   | 3.3                                             |

Table 4.10: Results of SFA translog cost models

Source: OXERA analysis.

Combining the results from the Cobb–Douglas and translog model specifications leads to an annual cost-reduction target over a five-year period for TCNZ in the range of 1.1–3.3% (but note the caveats presented at the beginning of this section).

## **DEA results**

Table 4.11 summarises the results of the DEA of 'total costs', as given by the arithmetic sum of operating costs and the standardised 'depreciation' figure.

| Returns to<br>scale | Outputs                          |          | Inefficiency (%) | Target cost reduction over five years (% pa) |
|---------------------|----------------------------------|----------|------------------|----------------------------------------------|
| CRS                 | lines                            | swminor  | 5.9              | 1.2                                          |
| VRS                 | llines                           | swminor  | 3.6              | 0.7                                          |
| CRS                 | lines_swbus, line_swres, line_ll | swminor  | 2.2              | 0.4                                          |
| VRS                 | lines_swbus, line_swres, line_ll | swminor  | 1.7              | 0.3                                          |
| CRS                 | lines                            | swminalt | 14.2             | 3.0                                          |
| VRS                 | lines                            | swminalt | 12.9             | 2.7                                          |
| CRS                 | lines_swbus, line_swres, line_ll | swminalt | 5.3              | 1.1                                          |
| VRS                 | lines_swbus, line_swres, line_ll | swminalt | 4.4              | 0.9                                          |

Source: OXERA analysis.

No counterintuitive allocation of weights was detected for TCNZ's outputs in the DEA models presented above. The models also presented fair discriminatory power, apart from those using the disaggregated access lines measure and adopting a VRS assumption, in which more than one-third of the comparator group was assessed as fully efficient. However, given the similarities of the estimated efficiency results of these models under CRS and VRS assumptions, the analysis does not dismiss the results of these less discriminatory specifications. The annual cost-reduction target over a five-year period for TCNZ derived from the single-input, 'total cost' measure, DEA models is in the range of 0.3–3%.

Table 4.12 summarises the results of the DEA of total costs given by modelling operating costs and the standardised 'depreciation' figure as two separate inputs to allow for different rates of expenditure substitution for different companies. As discussed at the beginning of this section (section 4.1.2), when two separate inputs are included in these DEA models, the outcome can be that companies are assessed as being 100% efficient as a result of all the weight being placed on one input only. To avoid this inequitable result, constraints were included in the modelling such that the weight placed on OPEX should be at least twice that placed on CAPEX. Also, given that the adoption of linear constraints in a non-linear model (ie, one that adopts a VRS assumption) can be problematic, in both conceptual and computational terms, the modelling summarised below is for the CRS formulation only, indicating in the first column the inclusion or exclusion of the weight restriction.

| Constraint | Outputs                          |          | Inefficiency (%) | Target cost reduction over five years (% pa) |
|------------|----------------------------------|----------|------------------|----------------------------------------------|
| No         | lines                            | swminor  | 0.0              | 0.0                                          |
| Yes        | lines                            | swminor  | 15.1             | 3.2                                          |
| No         | lines_swbus, line_swres, line_ll | swminor  | 0.0              | 0.0                                          |
| Yes        | lines_swbus, line_swres, line_ll | swminor  | 11.7             | 2.5                                          |
| No         | lines                            | swminalt | 0.0              | 0.0                                          |
| Yes        | lines                            | swminalt | 13.0             | 2.7                                          |
| No         | lines_swbus, line_swres, line_ll | swminalt | 0.0              | 0.0                                          |
| Yes        | lines_swbus, line_swres, line_ll | swminalt | 3.6              | 0.7                                          |

| Table 4.12: Results of DEA models with two separate inputs |
|------------------------------------------------------------|
|------------------------------------------------------------|

Source: OXERA analysis.

When the unconstrained two-input DEA models were estimated, it was found that TCNZ reached a frontier position by applying between 77% and 98% of its total relative input weight to the standardised 'depreciation' measure (depending on the specification). Given this measure's lack of intuitive and theoretical appeal, together with its lack of accuracy, the results reached by such specifications are not considered robust and therefore an input weight restriction is imposed.

According to the constrained two-input DEA models, the annual cost-reduction target over a five-year period for TCNZ is in the range of 0.7–3.2%.

#### 4.2.2 'Total cost' excluding marketing

This section summarises the results of modelling operating costs excluding marketing, combined with the standardised 'depreciation' measure.

#### SFA results

Table 4.13 summarises the results of the SFA of 'total costs' (as given by the arithmetic sum of operating costs excluding marketing and a standardised depreciation figure) using Cobb–Douglas cost functions. Excluding marketing leads to the deterioration of TCNZ's estimated efficiency score, which results in annual cost reductions over five years in the range 1.9–3.7%. (All of the developed models were robust.)

|      | Distribution     | Outpu  | ıts       |           | Inefficiency (%) | Rank | Target cost reduction over five years (% pa) |
|------|------------------|--------|-----------|-----------|------------------|------|----------------------------------------------|
| D1.h | half normal      | llines | Iswminor  | Inshealth | 14.3             | 23   | 3.0                                          |
| D1.e | exponential      | llines | Iswminor  | Inshealth | 9.3              | 24   | 1.9                                          |
| D1.t | truncated normal | llines | Iswminor  | Inshealth | 11.1             | 24   | 2.3                                          |
| D2.h | half normal      | llines | Iswminalt | Inshealth | 17.4             | 33   | 3.7                                          |
| D2.e | exponential      | llines | Iswminalt | Inshealth | 12.4             | 33   | 2.6                                          |
| D2.t | truncated normal | llines | lswminalt | Inshealth | 14.8             | 33   | 3.1                                          |

Table 4.13: Results of SFA Cobb–Douglas models

Source: OXERA analysis.

Table 4.14 summarises the results of the SFA of total costs (as given by the arithmetic sum of operating costs excluding marketing and a standardised depreciation figure), using

translog cost functions. Model D3.e is not particularly robust (being valid only at around the 20% significance level). Ignoring this model would suggest a target cost-reduction range for TCNZ of 2.7–4.7% per annum over five years.

|      | Distribution     | Outputs, excluding<br>cross-product terms | Inefficiency (%) | Rank | Target cost reduction over five years (% pa) |
|------|------------------|-------------------------------------------|------------------|------|----------------------------------------------|
| D3.h | half normal      | llines Iswminor                           | 12.9             | 22   | 2.7                                          |
| D3.e | exponential      | llines Iswminor                           | 7                | 30   | 1.5                                          |
| D3.t | truncated normal | llines Iswminor                           | n.a              | n.a  | n.a                                          |
| D4.h | half normal      | llines Iswminalt                          | 21.2             | 41   | 4.6                                          |
| D4.e | exponential      | llines Iswminalt                          | 15.4             | 42   | 3.3                                          |
| D4.t | truncated normal | llines Iswminalt                          | 21.3             | 41   | 4.7                                          |

*Note*: For the full specification of these models, see Appendix A2.4.3 and A2.4.4. *Source*: OXERA analysis.

Combining the results from the Cobb–Douglas and translog model specifications leads to a annual cost-reduction target over a five-year period for TCNZ in the range of 1.9–4.7% (but note the caveats presented at the beginning of this section).

#### **DEA results**

Table 4.15 summarises the results of the DEA of total costs, as given by the arithmetic sum of operating costs and a standardised depreciation figure.

| Returns to<br>scale | Outputs                          |          | Inefficiency (%) | Target cost reduction over<br>five years (% pa) |
|---------------------|----------------------------------|----------|------------------|-------------------------------------------------|
| CRS                 | lines                            | swminor  | 12.5             | 2.6                                             |
| VRS                 | lines                            | swminor  | 10.6             | 2.2                                             |
| CRS                 | lines_swbus, line_swres, line_ll | swminor  | 8.6              | 1.8                                             |
| VRS                 | lines_swbus, line_swres, line_ll | swminor  | 7.9              | 1.6                                             |
| CRS                 | lines                            | swminalt | 19.2             | 4.2                                             |
| VRS                 | lines                            | swminalt | 18.6             | 4.0                                             |
| CRS                 | lines_swbus, line_swres, line_ll | swminalt | 11.2             | 2.3                                             |
| VRS                 | lines_swbus, line_swres, line_ll | swminalt | 10.1             | 2.1                                             |

#### Table 4.15: Results of DEA models

Source: OXERA analysis.

No counterintuitive allocation of weights was detected for TCNZ's outputs in the DEA models presented above. The models also presented fair discriminatory power, apart from those that use the disaggregated access lines measure based on a VRS assumption, in which more than one-third of the comparator group was assessed as fully efficient. However, given the similarities of the estimated efficiency results of these models under CRS and VRS assumptions, the analysis does not dismiss the results of these less discriminatory specifications. The annual cost-reduction target over a five-year period for TCNZ derived from the single-input, 'total cost' measure, DEA models is the range of 1.6–4.2%.

Table 4.16 summarises the results of the DEA of total costs as given by modelling operating costs and the standardised 'depreciation' figure as two separate inputs. As discussed at the beginning of this section (section 4.1.2), when two separate inputs are included in these DEA models, the outcome can be companies being assessed as 100% efficient by placing all the weight on only one input. To avoid this inequitable result, constraints were included in the modelling such that the weight placed on OPEX should be at least twice that placed on CAPEX. Also, given that the adoption of linear constraints in a non-linear model (ie, one that adopts a VRS assumption) can be problematic, in both conceptual and computational terms, the modelling summarised below is for the CRS formulation only, indicating in the first column the inclusion or exclusion of the weight restriction.

| Constraint | Outputs                          |          | Inefficiency (%) | Target cost reduction over<br>five years (% pa) |
|------------|----------------------------------|----------|------------------|-------------------------------------------------|
| No         | lines                            | swminor  | 0.0              | 0.0                                             |
| Yes        | lines                            | swminor  | 10.8             | 2.3                                             |
| No         | lines_swbus, line_swres, line_ll | swminor  | 0.0              | 0.0                                             |
| Yes        | lines_swbus, line_swres, line_ll | swminor  | 6.9              | 1.4                                             |
| No         | lines                            | swminalt | 0.0              | 0.0                                             |
| Yes        | lines                            | swminalt | 18.0             | 3.9                                             |
| No         | lines_swbus, line_swres, line_ll | swminalt | 0.0              | 0.0                                             |
| Yes        | lines_swbus, line_swres, line_ll | swminalt | 9.5              | 2.0                                             |

Table 4.16: Results of DEA models with two separate inputs

Source: OXERA analysis.

When the unconstrained two-input DEA models were estimated, it was found that TCNZ reached a frontier position by applying between 80% and 98% of its total relative input weight to the standardised 'depreciation' measure (depending on the specification). Given this measure's lack of intuitive and theoretical appeal, together with its lack of accuracy, the results reached by such specifications could not be considered robust by the analysis and therefore an input weight restriction is imposed.

## According to the constrained two-input DEA models, the annual cost-reduction target over a five-year period for TCNZ is in the range of 1.4–3.9%.

## 4.2.3 Summary of the results of the 'total cost' modelling

In all models, TCNZ's estimated inefficiency has improved compared with the operating cost models. If the standardised depreciation measure used in the analysis were deemed to be robust, this could suggest that TCNZ is able to provide comparable telecommunications services to the LECs using a smaller asset base, which could be considered a measure of efficiency. However, the standardised depreciation measure used for the modelling suffers from a number of shortcomings (see section 3.2 and A1.2). On the other hand, these results indicate that TCNZ is more efficient in using its asset base than the LECs, since although it cannot be maintained that the measure produces accurate results, the direction and the relative size of the difference should provide an *indication* of relative capital efficiency.

Table 4.17 summarises the results of the 'total cost' modelling.

| Model                                                                                           | Target cost reduction (% pa) |                                                              |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|--|--|--|
|                                                                                                 | Range                        | Point estimate<br>(based on geometric mean<br>of all models) |  |  |  |
| SFA model of total costs including marketing                                                    | 1.1–3.3                      | 2.1                                                          |  |  |  |
| SFA model of total costs excluding<br>marketing                                                 | 1.9–4.7                      | 3.0                                                          |  |  |  |
| DEA model of total costs including marketing                                                    | 0.3–3.0                      | 1.0                                                          |  |  |  |
| DEA model of total costs excluding<br>marketing                                                 | 1.6–4.2                      | 2.5                                                          |  |  |  |
| DEA two input model of operating<br>costs including marketing, and<br>standardised depreciation | 0.7–3.2                      | 2.0                                                          |  |  |  |
| DEA two input model of operating<br>costs excluding marketing, and<br>standardised depreciation | 1.4–3.9                      | 2.2                                                          |  |  |  |

#### Table 4.16: Summary results of 'total cost' models

Source: OXERA analysis.

The question of data accuracy is still pertinent for the 'total cost' specifications, although the inclusion of a measure of capital expenditure (however lacking in appeal) creates additional theoretical concerns. These relate to the issue of substitution between the two inputs (see discussion in section 2.2). These issues can be tackled by the two-input DEA models. Therefore, given the combination of the theoretical factors of input substitution and the likely inaccuracy of the data employed, which is compounded by the use of the standardised 'depreciation', no estimate produced by these two approaches should be discarded outright. On the other hand, the results of the single input DEA model should carry less weight, given that the approach offers neither the separation of inefficiency from noise of the SFA approach nor a robust solution for the issue of input substitution of the two-input DEA models.

In any case, it is very unlikely that the estimated cost reduction ranges offer any degree of accuracy<sup>61</sup>, apart as an indicator of TCNZ's likely superior efficiency in utilising its capital resources. Despite the overall lack of robustness of the 'total cost' results, this factor plays a major role in the conclusions of this study.

<sup>61</sup> When excluding the results of the single-input DEA models, the range of cost reductions based on the 'total cost' sensitivity analysis is 0.7-4.7% pa, with the point estimates providing the narrower range of 2-3%.

## 5. Conclusions

This study has examined the relative efficiency of TCNZ, using comparisons with the US LECs.

The first step was to examine the raw data and adjust it, where appropriate, to improve the comparability between TCNZ and the LECs. For example, where TCNZ undertakes activities not carried by the LECs, the costs associated with these activities were removed from TCNZ's cost base.

The next step was to compare the costs of TCNZ and the LECs, to assess whether TCNZ's actual costs appeared to be higher than would be expected of an efficiently operated company. In order to make like-for-like comparisons as far as possible, modelling techniques were employed which explicitly take into account differences in operating characteristics, such as the impact of size and economies of scale.

Given the level of data adjustments and assumptions required to undertake the modelling, significant sensitivity testing was also carried out. In addition, in order to improve the robustness of the conclusions, several alternative modelling approaches were adopted. Thus, the relative efficiency of TCNZ was estimated using two comparative-efficiency techniques (SFA and DEA). These models were developed first by undertaking econometric modelling of the relevant definition of cost, using a general-to-specific approach in order to identify robust parsimonious models. Then, additional statistical diagnostic testing was undertaken, combined with outlier analysis, to ensure the robustness of the developed models. Every model was examined to ensure that it provided intuitively signed and sized relationships between costs and cost drivers. Finally, these models were then used to assist in developing appropriate DEA models.

In addition to using two comparative-efficiency techniques, three alternative input definitions were employed (where appropriate):

- OPEX only, using SFA and DEA;
- OPEX and CAPEX as two separate inputs, using DEA; and
- a 'total cost' measure as the sole input, using SFA and DEA.

However, in comparative-efficiency exercises, the definition of CAPEX raises considerable problems, and is often not dealt with properly. This is because, although, in theory, the correct cost measure to use would be a measure of *economic* depreciation, in reality it is difficult to gather data to construct such a measure. Therefore, the analysis in this study was based on the accounting definition of depreciation. However, due to accounting differences, some standardisation process was required. Thus, the depreciation measure used was based on applying a consistent depreciation methodology to the replacement value of the asset base across the companies. Unfortunately, the methodology used to derive the replacement values of each company's asset base require such extensive assumptions that the resulting asset base cannot be considered to be a robust representation of a company's capital inputs.

Having undertaken significant SFA and DEA modelling, TCNZ's relative efficiency in each case was then derived by examining its position relative to the estimated frontier. A summary of the main results is provided in Table 5.1 below.

| Model                                                  | Target cost reduction (% pa) |                                                              |
|--------------------------------------------------------|------------------------------|--------------------------------------------------------------|
|                                                        | Range                        | Point estimate<br>(based on geometric mean<br>of all models) |
| SFA model                                              |                              |                                                              |
| operating costs including marketing                    | 3.4–6.5                      | 4.7                                                          |
| operating costs excluding marketing                    | 5.0-7.4                      | 6.6                                                          |
| DEA model                                              |                              |                                                              |
| operating costs including marketing                    | 5.4–7.5                      | 6.2                                                          |
| operating costs excluding marketing                    | 7.9–10.2                     | 8.8                                                          |
| SFA model                                              |                              |                                                              |
| total costs including marketing                        | 1.1–3.3                      | 2.1                                                          |
| total costs excluding marketing                        | 1.9–4.7                      | 3.0                                                          |
| DEA model                                              |                              |                                                              |
| total costs including marketing                        | 0.3–3.0                      | 1.0                                                          |
| total costs excluding marketing                        | 1.6–4.2                      | 2.5                                                          |
| DEA two-input model                                    |                              |                                                              |
| operating costs including marketing, and capital costs | 0.7–3.2                      | 2.0                                                          |
| operating costs excluding marketing, and capital costs | 1.4–3.9                      | 2.2                                                          |

#### Table 5.1: Summary results of all models

*Source*: OXERA analysis.

Given the difficulties of quantifying CAPEX, OXERA considers that the results based on the OPEX specifications are the more satisfactory. However, the consequent inefficiency range from these models is tempered by the fact that TCNZ performs better on the 'total cost' model specifications, which suggests that TCNZ may be relatively more efficient on CAPEX (predicated on the accuracy of the estimation of capital costs). Thus, OXERA considers that a robust estimate for the potential cost reductions over a five-year period for TCNZ ranges between 2.5% and 5% per annum. This range is based on the lower end of the models that assess OPEX efficiency, which provide a range of 3.4-7.4% when the DEA specifications are excluded, and the middle point of the 'total cost' models, which provide a range of 2-3% when the single-input DEA specifications are excluded

As a final note, the results of this study represent the required savings TCNZ needs to achieve in order to reach efficient performance corresponding to the year 2000. In other words, they are a measure of static, or cross-industry, efficiency. Therefore, the resulting cost-reduction estimates do not incorporate likely cost reductions due to productivity improvements in the industry over time. The potential scope of these cost reductions, which are the result of overall technical and technological progress of the whole industry over time, could be quite significant; however, their estimation was beyond the remit of this study.

## Appendix 1: Data Used in the Analysis

The LEC data used in the analysis was provided by the Federal Communications Commission (FCC) and was found on its website. The data forms part of the information submission that FCC requires the incumbent Local Exchange Carriers (LECs) to provide for the purposes of regulation, and are referred to as Statistics of Communications Common Carriers (SOCC). The relevant publication contains company-specific and industry-wide information on telecommunications costs, revenues, prices and usage, and has been one of the most widely used reference works in the field of telecommunications.

The data concerning TCNZ was either sourced from the relative efficiency report produced by PricewaterhouseCooper's Consulting (PwCC) on behalf of TCNZ<sup>62</sup> or provided to OXERA by the NZCC.

## A1.1 Operating expenditure

## A1.1.1LECs

Information relating to expenses can be found in tables 2-10 and 2-11 of the SOCC. Expense accounts are separated on the basis of the combined Big Three Expenses, which include the following accounts.

| Big Three Expenses                                |
|---------------------------------------------------|
| Plant Specific Expenses                           |
| 6210 Central Office Switching Expenses            |
| 6220 Operators Systems Expenses                   |
| 6230 Central Office Transmission Expenses         |
| 6310 Information Origination/Termination Expenses |
| 6410 Cable and Wire Facilities Expense            |
| Plant Non-Specific Expenses                       |
| 6530 Network Operations Expenses                  |
| Customer operations expenses                      |
| 6610 Marketing                                    |
| 6620 Services                                     |
| Source: FCC SOCC.                                 |

#### Table A1.1: Overview of the expense accounts used for the LECs

The above expense accounts were used to construct the operating cost base used in the comparative-efficiency analysis. The accounts that were excluded from the operating cost base and the reasons for their exclusion are detailed below.

<sup>62</sup> PwCC Consulting (2002), 'TCNZ Efficiency Study Based on Stochastic Frontier Analysis (SFA)', September.

#### 6310 Information Origination/Termination Expenses

This expense account can be disaggregated into sub-categories, as shown in Table A1.2.

| 6310 | Information Origination/Termination Expenses |  |
|------|----------------------------------------------|--|
| 6311 | Station Apparatus                            |  |
| 6341 | Large Private Branch Exchange                |  |
| 6351 | Public Telephone Terminal Equipment          |  |
| 6362 | Other Terminal Equipment                     |  |

#### Table A1.2: Account no. 6310, Information Origination/Termination Expenses

Source: FCC SOCC

The reason for the exclusion of this account was comparability with the information available for TCNZ. The cost data supplied by TCNZ excluded a category of costs termed CPE (customer premises equipment), which is the equivalent of the Information Origination/Termination Expenses found in the LEC accounts. The relevant assets were also excluded from the calculation of the depreciation charge used in the analysis for both TCNZ and the LECs. A second reason for the exclusion of the above cost category is the structure of private-line rentals. Station apparatus and large private branch exchange costs relate to the provision of leased line and closed-loop circuits, a service that does not seem to be provided by a number of LECs. This was verified first by the very small revenues reported by some LECs on their Local Private Line and Customer Premises Revenue accounts (accounts 5040 and 5050), and, second, by the wide variability of costs in this category observed across the LECs; the proportion of these costs relative to the final operating cost figure used for the analysis ranges from 2% to 22%.

#### 6622 Number Services

This is a sub-category of the Services account that contains costs associated with the provision of customer number and classified listings. The reason for its exclusion was comparability with TCNZ's operating cost base, which excluded costs relating to the provision of directory services, and because the full details of this account for TCNZ were unknown.

#### Other excluded items

Although not included in the Big Three Expenses mentioned above, in constructing the operating cost base for the LECs the analysis did not include costs relating to access expenses (account no. 6540) and for the 'Provision for Uncollectible Notes Receivable' (account no. 6790). The reasons for the exclusion of said items are detailed below.

#### 6540 Access expenses

The definition of access expenses given by the FCC is as follows:

This account shall include amounts paid by interexchange carriers or other exchange carriers to another exchange carrier for the provision of carrier's carrier access.

This account was excluded from the analysis on the grounds that access costs, which are referred to in New Zealand as interconnect costs, represent rental payments made by the telecommunications operator in question to another operator for access to its network. In general, the issues relating to the provision of access to a telecommunications network are not straightforward.

Telecommunications networks provide a means of communicating with other end-users (including the ability to access data). In a monopoly communications market, end-users would naturally be connected to the same network. However, in a market of two or more players, end-users will not always be connected to the same network. Operators of communications networks therefore need to be physically and logically linked together—either directly or via a third party—to provide seamless conveyance of communications services across networks. The connection of communications networks is known as 'interconnection'. The charges for the conveyance of communications services across and between networks and for the physical connection to other networks are known as interconnection charges.

The relative size of interconnection charges is fundamental to the level of the retail price paid by the end-user. That price will include the costs incurred by the end-user's operator in providing the relevant telecommunications service (including retail costs, such as marketing), a profit element and any interconnection charge that the operator might have to pay to terminate the call on another operator's network. Given that interconnection charges relate to other operators' costs, and include a profit element, they should be considered as uncontrollable costs and thus removed from the analysis.

The exclusion of interconnection charges does not mean that the analysis does not take into account the costs incurred by the telecommunications operators for carrying calls on their networks, irrespective of the origination point of such calls.<sup>63</sup> These costs relate to the overall operation of the network and are thus included in the cost base (only access costs that the operator pays for the use of other operators' networks is excluded from the analysis).<sup>64</sup>

The issue of access is treated in this analysis by excluding the access expenses account (no. 6540) from the cost base of the assessed LECs. A similar treatment is applied to TCNZ's costs (see section A1.1.2).

#### 6790 Provision for Uncollectible Notes Receivable

This account relates to a provision for doubtful debts (also known as bad debts). This account was excluded from the analysis on the basis that its size depends on regulatory decisions and the accounting systems adopted by the operators (which could also be determined by the regulator). Since the LECs and TCNZ operate under different regulatory environments and face different accounting frameworks, the analysis excludes accounts relating to the provision for bad debts from the cost base of *all* comparators, including TCNZ.

<sup>&</sup>lt;sup>63</sup> As a reminder, the aim of this comparative-efficiency analysis is to measure the relative efficiency of the telecommunications operators in providing the relevant services that make the exchange of voice or data services over a fixed-line network possible.

<sup>&</sup>lt;sup>64</sup> The telecommunications operator is compensated for providing access over its network by interconnection payments received, which theoretically should cover the 'engineering' cost of providing such access. However, although the whole issue of access charging is central to telecommunications regulation, the balance between interconnection outpayments and revenues is not relevant for this analysis.

#### 6610 Marketing, excluded in some models as a form of sensitivity analysis

In some of the alternative modelling exercises, this account is excluded from the operating cost base of the LECs as a form of sensitivity analysis. The reason for this is TCNZ's request that all sales and marketing relating to national calls be excluded. Sales and marketing expenses for national calls amount to [ $\gg$ ]. The relevant weighted average value for the LECs is 7%. It appears that the relative size of the total sales and marketing expenses in the USA is comparable with that of the national sales and marketing expenses in New Zealand. Since the LECs' sales and marketing expenses are not broken down into local and intraLATA calls, some sensitivity analysis is undertaken, where sales and marketing costs (relating to specific products and not general brand marketing) are removed from the LECs' operating cost base, and sales and marketing costs for national calls are also removed from TCNZ's operating cost base.

#### A1.1.2TCNZ

The available accounting information relating to operating costs for TCNZ was not as detailed as that available for the LECs. One of the most significant constraints for this analysis was that the accounting information for TCNZ was not compatible with the framework of the LEC accounts, and was at a significantly higher level of aggregation. Another shortcoming was the lack of precise definitions regarding the cost categories used; the same applies to the allocation policies employed to arrive at the cost figures in question. Therefore, although an examination of the relative size of the cost figures provided has identified some counterintuitive values, this may be due to OXERA's not having access to precise definition for the accounting categories used by TCNZ.

In more detail, TCNZ's OPEX is divided into two major categories: Network OPEX, and Sales and Services OPEX. For each category, TCNZ provided a disaggregation of costs into the following categories:

| Access/Local               | Other Data                            |
|----------------------------|---------------------------------------|
| National                   | CPE                                   |
| International              | Message/Smart                         |
| Calls to Mobile            | Interconnect                          |
| Leased Lines National      | Other services, mobile, directory etc |
| Leased Lines International | -                                     |

#### Network OPEX

In its data submission, TCNZ suggested that a number of cost categories would need to be excluded from the analysis for reasons of comparability with the LECs. The suggested cost categories and relevant values to be excluded were based on analysis previously undertaken by PwCC. Table A1.3 presents the submitted information.

| Network OPEX                          | Total | Included | Excluded |
|---------------------------------------|-------|----------|----------|
| Access/Local                          | [×]   | [×]      | [⊁]      |
| National                              | [×]   | [×]      | [⊁]      |
| International                         | [×]   | [×]      | [≯]      |
| Calls to Mobile                       | [×]   | [×]      | [≯]      |
| Leased Lines National                 | [×]   | [×]      | [≯]      |
| Leased Lines International            | [×]   | [×]      | [≯]      |
| Other Data                            | [×]   | [×]      | [≯]      |
| CPE                                   | [×]   | [×]      | [≯]      |
| Message/Smart                         | [×]   | [×]      | [≯]      |
| Interconnect                          | [×]   | [×]      | [⊁]      |
| Other services, mobile, directory etc | [×]   | [×]      | [⊁]      |
| Total                                 | [×]   | [≯]      | [≯]      |

#### Table A1.3: Network OPEX account (NZ\$)

Source: TCNZ.

OXERA's understanding of what these accounts represent and whether they should be excluded from the analysis (either wholly or in some proportion) is summarised in Table A1.4 (changes are highlighted).

| Network OPEX                          | Total | Included   | Excluded |
|---------------------------------------|-------|------------|----------|
| Access/Local                          | [×]   | [×]        | [×]      |
| National                              | [×]   | [⊁]        | [×]      |
| International                         | [×]   | $[\times]$ | [×]      |
| Calls to Mobile                       | [×]   | [≯]        | [×]      |
| Leased Lines National                 | [×]   | [≯]        | [×]      |
| Leased Lines International            | [×]   | [≯]        | [×]      |
| Other Data                            | [×]   | [×]        | [×]      |
| CPE                                   | [×]   | [⊁]        | [×]      |
| Message/Smart                         | [×]   | [×]        | [×]      |
| Interconnect                          | [×]   | [×]        | [×]      |
| Other services, mobile, directory etc | [×]   | [×]        | [×]      |
| Total                                 | [×]   | [×]        | [×]      |

#### Table A1.4: Network OPEX account (NZ\$)

Source: TCNZ and OXERA analysis.

Detailed explanations of the allocations in Table A1.4 are provided below.

#### Access/Local

TCNZ suggested that all access/local costs should be included in the analysis. However, discussions with TCNZ revealed that the data provided included a category of outpayments relating to interconnection charges for local calls and toll bypass calls. According to OXERA's treatment of access costs, and to maintain comparability with the LECs, these items were removed from TCNZ's cost base.

#### The total value of this adjustment reduced TCNZ's cost base by $[\times]$ .

#### National

According to TCNZ, only [ $\gg$ ] of the total costs relating to the national calls account need to be excluded from the analysis. A data clarification request from TCNZ revealed that the cost figure excluded relates to costs incurred in handling emergency calls. The justification for excluding this item was that these costs are not incurred by the LECs, which, to OXERA's knowledge, is a valid point.

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### International

TCNZ suggested that the bulk of this account should be removed from the analysis. Further discussion revealed that the proportion of costs to be excluded relates to interconnection payments made by TCNZ to international telecommunications operators. Given OXERA's treatment of access costs, and for consistency with the LECs, this adjustment appears appropriate.

However, there is some ambiguity in the definition of this account. The provision of international call services requires use of the local network (as the international call passes from the international exchange to the local exchange, and vice versa); thus, a proportion of the costs relating to local network access would be expected to be included in this account. If the proportion of international calls costs that TCNZ suggested should be included in the analysis is assumed to recover the costs relating to the use of the local network, they appear to represent too small a proportion of the total cost of this account. This finding was based on further analysis, which revealed that these costs represent approximately [ $\gg$ ] of the Local/Access account, while the proportion of international switched minutes is [ $\gg$ ] of total switched minutes. This discrepancy between costs and usage raises doubts regarding the accuracy of the figure included in TCNZ's cost base.

#### Nevertheless, TCNZ is 'given the benefit of doubt'. Moreover, since the relative size of the cost item to be included is small, no adjustment regarding this figure was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Calls to mobile

The cost figure that TCNZ requested to be excluded from the analysis relates to interconnection charges paid by TCNZ to mobile operators for the termination of calls originating from the fixed network. According to the access treatment adopted, and for consistency with the LECs, these costs need to be removed from the analysis.

However, as is the case for international calls, it would be expected that at least a proportion of costs relating to this category should be included in the analysis, in order to cover the costs incurred by the use of the local network. No such adjustment is apparent in the accounts provided by TCNZ.

# Nevertheless, TCNZ is given the benefit of doubt and no adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Leased lines national

All costs relating to this account are included in the analysis. Since leased-line services are also provided by the LECs, this treatment is considered appropriate.

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Leased Lines International

All costs relating to international leased lines are removed from the analysis. Since, in the USA, international leased line services are wholly provided by the international exchange carriers (the LECs are directly prohibited by the FCC from providing such services), the exclusion of such costs is justifiable

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Other data

TCNZ requested the exclusion of such costs due to PwCC advising the company that 'information on data services (other than leased lines) is not included in the LEC data and should hence be excluded from TCNZ data for consistency'. However, research conducted by OXERA for this analysis revealed that the LECs provide a wide range of data services, including both ISDN and xDSL (ie, high-speed services). An examination of the LEC accounting definitions also revealed no reference to excluding a proportion of costs relating to the Big Three Expenses that relate to the provision of such services.

## Therefore, this cost category is included in OXERA's analysis, which serves to increase the operating cost base of TCNZ by [%].

#### CPE (customer premises equipment)

For consistency with the LECs, this item was excluded from TCNZ's cost base (see the discussion in A1.1.1).

No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Message/Smart

No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Interconnect

No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Other services, mobile, directory etc

TCNZ suggested that all costs relating to this category should be excluded from the analysis. However, an examination of the equivalent account in sales and services OPEX identified a number of sub-categories (relating to securing interconnect revenue, other revenue and error product) that describe activities undertaken by the LECs. Therefore, to ensure like-for-like comparisons, the costs incurred by TCNZ in undertaking these activities should be included in the analysis.

However, a full breakdown for 'other services, mobile, directory etc' under Network OPEX was not available, as was the case for the Sales and Services category. To overcome this problem, the analysis assumes that the same sub-categories found under the Sales and Services OPEX apply for Network OPEX as well, and, therefore, the same proportion of costs which were included in TCNZ's cost base in the Sales and Services OPEX category is included for Network OPEX as well. This proportion is estimated to be approximately [ $\gg$ ] of the total 'Other services, mobile, directory etc' account in the Sales and Services OPEX, and thus the same proportion is re-included for the Network OPEX category as well. (This proportion was derived without taking into account the subcategory of 'Business sustaining costs'.)

A proportion of this cost category is included in the analysis, increasing TCNZ's operating cost base by NZ\$9,976,669.

#### Sales and Services OPEX

In its data submission TCNZ suggested that a number of cost categories would need to be excluded from the analysis for reasons of comparability with the LECs. The suggested cost categories and relevant values to be excluded were based on analysis previously undertaken by PwCC. Table A1.5 presents the submitted information.

|                                          | Total OPEX <sup>1</sup> | Included in CE | Excluded from CE |
|------------------------------------------|-------------------------|----------------|------------------|
| Access/Local                             | [×]                     | [×]            | [×]              |
| National                                 | [×]                     | [×]            | $[\times]$       |
| International                            | [×]                     | [⊁]            | [≯]              |
| Calls to Mobile                          | [≯]                     | [⊁]            | [≯]              |
| Leased Lines National                    | [×]                     | [≻]            | [≯]              |
| Leased Lines Internation                 | al [≫]                  | [≻]            | [≫]              |
| Other Data                               | [×]                     | [⊁]            | [≫]              |
| CPE                                      | [×]                     | [⊁]            | [≫]              |
| Message/Smart                            | [⊁]                     | [×]            | [⊁]              |
| Interconnect                             | [×]                     | [×]            | [⊁]              |
| Other services, mobile,<br>directory etc | [×]                     | [≫]            | [≯]              |
| Total                                    | [×]                     | [×]            | [×]              |

#### Table A1.5: Sales and Services OPEX account (NZ\$)

*Note:*<sup>1</sup> Total OPEX after the allocation of Business sustaining costs (ie, values include business sustaining costs). *Source*: TCNZ.

While more extensive information was made available, compared with the Network OPEX account, the available information still does not approach the level of detail available for the LECs. OXERA therefore had to make some assumptions regarding certain cost definitions and the treatment of some cost categories.

OXERA's understanding on what these accounts represent and whether they should be excluded from the analysis (either wholly or in some proportion) is summarised in Table A1.6 (changes are highlighted).

|                                       |                         | Including I       | marketing costs     |                   | Excluding marketing<br>costs (sensitivity) |  |
|---------------------------------------|-------------------------|-------------------|---------------------|-------------------|--------------------------------------------|--|
|                                       | Total OPEX <sup>1</sup> | Included in<br>CE | Excluded from<br>CE | Included in<br>CE | Excluded from<br>CE                        |  |
| Access/Local                          | [×]                     | [×]               | [×]                 | [⊁]               | [×]                                        |  |
| National                              | [×]                     | [×]               | [×]                 | [⊁]               | [×]                                        |  |
| International                         | [×]                     | [×]               | [⊁]                 | [⊁]               | [×]                                        |  |
| Calls to Mobile                       | [×]                     | [×]               | [≯]                 | [×]               | [×]                                        |  |
| Leased Lines National                 | [≯]                     | [≯]               | [×]                 | [≯]               | [×]                                        |  |
| Leased Lines<br>International         | [≯]                     | [≯]               | [⊁]                 | [≯]               | [×]                                        |  |
| Other Data                            | [⊁]                     | [⊁]               | [⊁]                 | [⊁]               | [×]                                        |  |
| CPE                                   | [×]                     | [⊁]               | [⊁]                 | [≫]               | [×]                                        |  |
| Message/Smart                         | [×]                     | [×]               | [⊁]                 | [⊁]               | [×]                                        |  |
| Interconnect                          | [⊁]                     | [×]               | [×]                 | [⊁]               | [×]                                        |  |
| Other services, mobile, directory etc | [×]                     | [×]               | [×]                 | [×]               | [×]                                        |  |
| Total                                 | [≯]                     | [⊁]               | [×]                 | [≫]               | [⊁]                                        |  |

#### Table A1.6: Sales and Services OPEX account (NZ\$)

*Note*: <sup>1</sup> Total OPEX after the allocation of Business sustaining costs (ie, values include business sustaining costs).

Source: TCNZ and OXERA analysis.

Detailed explanations of the allocations in Table A1.6 are provided below.

#### Access/Local

According to TCNZ all Access/local costs need to be included in the analysis. The analysis undertaken in this study assumes that this treatment is appropriate. (However, no access payments are included in Sales and Services costs—all access payments are incorporated in network access costs.)

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### National

The proportion of costs relating to national costs that TCNZ suggested be removed from the analysis relate to marketing and sales costs and billing costs for such calls. The analysis assumes that the allocation of such costs between local, national and international services has been robustly implemented, although the proportion of national marketing and sales costs to total operating costs (excluding access costs) for TCNZ is very close in size to the proportion of **total** marketing and sales costs to total operating costs for the LECs (see A1.1.1 for full details). Because of this similarity, extensive sensitivity analysis has been undertaken for the purposes of this study by removing sales and marketing costs from the cost base of both TCNZ and the LECs.

The 'original' definition of OPEX used in this study, however, does not exclude the full proportion of such costs from TCNZ's cost base, as Table A1.6 demonstrates. This is due to comparability reasons with the LECs; although these telecommunications operators do not provide national calling services under the wide definition adopted by TCNZ, they do provide some long-distance call services. The following attempts to clarify the reasoning behind this adjustment.

The LECs provide three types of call service: local, intra-LATA<sup>65</sup> and inter-LATA. Local calls for the LECs are directly comparable with those of TCNZ (at least when a measure of switching complexity is taken into account). Inter-LATA calls are passed through a LEC's local network to exchange facilities controlled by an IXC (inter-exchange carrier), and are therefore not the focus of this analysis (at least after the call has been switched from the local loop to the IXC point-of-presence). By contrast, Intra-LATA calls are akin to the definition of national calls used by TCNZ, in that these calls leave the local calling area (LCA) switched by the same LEC-owned local exchange to the local exchange of the terminating end of the call. They are then switched through the terminating local loop and are finally terminated by the same LEC. As such, all parts of an intra-LATA call are handled by the same LEC, which also incurs all the relevant costs. (The exception is where a competitor company operates its own local loop or toll bypass facilities. However, in such a case, some access costs are incurred, which are controlled for in this analysis by their removal from the cost base of both the LECs and TCNZ).

The existence of intra-LATA calls implies that the complete exclusion of sales and marketing costs and billing costs relating to TCNZ's national calls is not appropriate. The treatment adopted for this analysis is to include a proportion of the excluded costs equal to the proportion of intra-LATA calls to all long-distance calls handled by the LECs (ie, the sum of intra-LATA and inter-LATA calls). This proportion was estimated US-wide to be 15.25%.

Given that this adjustment may not be very accurate, OXERA undertook sensitivity analysis in the modelling stage of this study by using two definitions of OPEX: the first includes all sales and marketing costs for the LECs and the above proportion of the relevant costs for TCNZ (the columns marked as 'including marketing costs' in Table A1.6); the second definition excludes such costs from the LECs' cost base and excludes the available values for national sales, marketing and billing expenses from TCNZ's operating cost base.

#### The adjustment proposed by OXERA increases TCNZ's operating cost base by $[\times]$ .

<sup>&</sup>lt;sup>65</sup> LATA is defined as 'local access and transmission area' and denotes the geographical area where a certain LEC is allowed to provide telephony services.

#### International

According to TCNZ, the bulk of this account should be removed from the analysis. Although there is some ambiguity about the definition of this account (refer to earlier discussion for network OPEX), no adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Calls to mobile

According to TCNZ, the bulk of this account should be removed from the analysis. Although there is some ambiguity about the definition of this account (refer to earlier discussion for network OPEX), no adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Leased lines national

All costs relating to this account are included in the analysis. Since leased-line services are also provided by the LECs, this treatment is considered appropriate.

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Leased lines international

All costs relating to international leased lines are removed from the analysis. Since, in the USA, international leased-line services are wholly provided by the international exchange carriers (the LECs are directly prohibited by the FCC from providing such services), the exclusion of such costs is justifiable.

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Other data

TCNZ suggested the exclusion of such costs due to PwCC advising the company that 'information on data services (other than leased lines) is not included in the LEC data and should hence be excluded from TCNZ data for consistency.' However, research conducted by OXERA for this analysis revealed that LECs provide a wide range of data services, including both ISDN and xDSL (ie, high-speed services). An examination of the LEC accounting definitions also revealed no reference to the exclusion of a proportion of costs that relate to the provision of such services.

## This cost category is included in the analysis, which serves to increase the operating cost base of TCNZ by [ $\gg$ ].

#### CPE (customer premises equipment)

For consistency with the LECs, this item was excluded from TCNZ's cost base (see the discussion in A1.1.1).

## No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Message/Smart

No adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Interconnect

Interconnect costs are not allocated to Network OPEX and, therefore, no adjustment regarding this account was made in OXERA's analysis (TCNZ's treatment was adopted as it stands).

#### Other services, mobile, directory etc

Initially, TCNZ suggested that all costs relating to this category should be excluded from the analysis. When asked to provide more detail on the sub-categories of costs included in this account, TCNZ discovered in collating the necessary data that there had been some misallocation of costs in this account. The 'Other services, mobile, directory etc' account included a substantial cost item ([ $\gg$ ]) relating to 'Business sustaining costs', which are defined by TCNZ as 'a bucket of common costs associated with sales and marketing'. The full breakdown of this account is provided in Table A1.7.

| Sales and Services 'other costs' | Costs NZ\$ |  |
|----------------------------------|------------|--|
| CBA RAS Services                 | [×]        |  |
| Mobile/Cellular                  | [×]        |  |
| Mobile/Paging                    | [×]        |  |
| Mobile/Mobile                    | [×]        |  |
| Mobile/Airdata                   | [×]        |  |
|                                  | [×]        |  |
| Mobile Group                     | [×]        |  |
| Mobile/Other                     | [×]        |  |
| Interconnect Revenue             | [×]        |  |
| Other Revenue                    | [×]        |  |
| Directories                      |            |  |
| Error Product                    | [×]        |  |
| Business Sustaining Costs        | [×]        |  |
| Total                            | [×]        |  |
| Source: TCNZ                     |            |  |

#### Table A1.7: Sales and Services: 'Other services, mobile, directory etc' OPEX account

Source: TCNZ.

TCNZ acknowledged that the 'Business sustaining costs' category needed to be included in the analysis and suggested that the relevant costs be allocated across the different product categories on the basis of each product group's directly attributable costs. The analysis has since adopted this suggestion. A further clarification from TCNZ provided a summary breakdown of the 'Business sustaining costs' category, which reveals that the most significant proportion of these costs relates to customer services, billing, sales and marketing activities. Therefore, another possible treatment of this account could be to include the costs corresponding to the above categories directly, instead of opting for an allocation approach. This would serve to increase TCNZ's cost base by [ $\gg$ ]. However, this form of sensitivity analysis was not implemented, due to time constraints.

Also included in the 'Other services, mobile, directory etc' category are a number of smaller items that TCNZ suggested should be excluded (see Table A1.7). However, it would make intuitive sense that costs for securing interconnect revenue and other revenue, as well as error product accounts,<sup>66</sup> are also incurred by the LECs and should thus be included in the analysis. These costs represent approximately [ $\gg$ ] of the total 'Other services, mobile, directory etc' account, once the sub-category of 'Business sustaining costs' has been taken out. Therefore, the costs relating to these categories should be included in TCNZ's operating cost base.

<sup>66</sup> According to OXERA's understanding, the error product account includes costs that have not been allocated to the appropriate categories, but should have been. This could be due to rounding errors, or allocation methodology issues.

Thus, two adjustments were made to the 'Other services, mobile, directory etc' account:

- TCNZ's operating cost base is increased by [ $\gg$ ]—ie, the amount of costs from the business sustaining costs category allocated to the categories that are included in the analysis. This is consistent with the allocation method suggested by TCNZ;<sup>67</sup> and
- TCNZ's operating cost base is increased by [%]—in relation to interconnect revenue, other revenue and error product cost.

#### A1.2 Capital expenditure

A number of issues arise in constructing an appropriate CAPEX measure to be included in the analysis and the appropriate method for its assessment, as section 2 serves to demonstrate. Section 2 concluded that a possible CAPEX measure for the analysis could be standardised depreciation, which could be based on standardised asset replacement values and a uniform depreciation profile for each asset category. However, the construction of a robust measure of CAPEX for the comparative-efficiency analysis has not been possible owing to the inability of the analysis to evaluate robustly the asset base of the LECs. Despite this, this study did use the asset valuation methodology proposed by TCNZ (and previously used by Oftel) to construct a standardised depreciation measure, which was later used in some of the sensitivity analysis. The methodology and OXERA's concerns are detailed below.

The aim of the methodology is to convert the asset values found in the companies' accounts—reported using historic-cost accounting standards—into their current-cost accounting (CCA) equivalents. It tries to achieve this by using the following formula:

$$\frac{CCA}{HCA} = ((1 + I_a) * (1 + I_g))^{[(1 - NBV/GBV)/D]}$$
 Equation A1.1

where:

- CCA = the value based on current-cost accounting;
- HCA = the value based on historic-cost accounting;
- NBV = the net book value;
- GBV = the gross book value;
- $I_a$  = real telecommunications-specific inflation (%);
- $I_g =$  the general inflation rate of New Zealand or the USA;
- D = the weighted average of depreciation percentage over the asset categories.

<sup>&</sup>lt;sup>67</sup> The OPEX figures presented in Tables A1.5 and A1.6 have already included this adjustment.

To make the above more intuitive, [(1-NBV/GBV)/D] could be substituted by *a*, where *a* is the average age of the asset category.

The data supplied by FCC for the LECs includes neither net book asset values nor average asset ages per asset category. Therefore, TCNZ, in its original study, applied its own average asset age to the formula used to convert the LEC asset values. Also, since no estimates of telecommunications-specific inflation rates were available for the LECs, TCNZ's estimates were used for the same reason.

The application of TCNZ's average asset age to the LECs' asset profiles—and, to a lesser degree, the telecommunications-specific inflation rates—defeats the whole purpose of the methodology, and leads to a measure that has little meaning when used to assess cost efficiency. The application of this treatment implicitly assumes that TCNZ and *all* the LECs are in the same position in their business and investment cycles, since it assumes that the asset ages of TCNZ and the LECs are the same and that the mix of assets (which is used to derive the average telecommunications-specific inflation rate) in each asset category is the same for both LECs and TCNZ. These assumptions **will** introduce bias into the analysis, in the following two ways.

- Some of the LECs will have an asset base that is older than TCNZ. By applying TCNZ's average asset age to the formula for calculating the CCA to HCA ratio, the CCA asset values will be overstated (since the exponent used, which should be equal to the assets' average age, will be smaller than its true value). This will lead to an overstatement of the standardised depreciation measure, which in turn will result in an understatement of the LEC's efficiency estimate. The reverse holds for LECs with asset bases that are newer than that of TCNZ.
- The mix of the assets available in each category will depend on several factors; there are examples where a telecommunications operator has opted to install relatively inexpensive assets that incur high maintenance costs. The choice of technology will also depend on the needs of the portion of the network to which this technology relates. The rate of take-up of new technologies will also influence the asset mix of each company. All of the above choices are endogenous to the assessed operator, and can be considered as sources of efficiency (or inefficiency). The application of a single, aggregate telecommunications-specific inflation rate will remove all the variability in the comparator set that is due to these choices.

The above discussion should help to point out the methodology's severe reliance on TCNZ's values. This reliance makes the resulting depreciation estimates less representative of the actual capital consumption over the assessed period. This makes the efficiency estimates that also include this measure in the estimation less reliable. Nevertheless, and despite its limitations, sensitivity analysis that makes use of the constructed standardised 'depreciation' measure is undertaken in this study.

A further question that needs to be considered is how to use the constructed CAPEX measure in the analysis. Since this measure is expressed in monetary terms, TCNZ suggested that the appropriate approach would be to add it to OPEX in order to arrive at a measure of total costs. However, this treatment would mean that OPEX and CAPEX can be substituted on a one-to-one basis, which is counterintuitive (see the discussion in section 2). A more robust approach would be to include the CAPEX measure separately in the analysis, which is possible through the use of DEA. Although the aggregation to a

single-cost-measure approach is not theoretically justifiable, this study has implemented extensive sensitivity analysis using this measure as well.

The asset categories for both TCNZ and LECs that were used to construct the depreciation measure are presented in Table A1.8.

| Asset categories                          |  |
|-------------------------------------------|--|
| Total Land and Support Assets             |  |
| Total Central Office Switching            |  |
| Operator Systems                          |  |
| Total Central Office Transmission         |  |
| Total Information Origination/Termination |  |
| Total Cable and Wire Facilities           |  |

#### Table A1.8: Asset categories

The only excluded category for the LECs (and TCNZ) is 'Total Information Origination/Termination systems'. This was excluded for reasons of balance between OPEX and CAPEX, the high variability of its values (mentioned above in A1.1), and finally for consistency with TCNZ's accounts.

The comparability problems of the accounting systems encountered with OPEX were absent in the case of CAPEX because TCNZ supplied asset information that was mapped directly onto the LEC accounting system. The only exception to this were two asset accounts for TCNZ termed 'Other data equipment' and 'Leased service equipment', which are excluded from the analysis. Although the comparable OPEX items are included in TCNZ's cost base, the CAPEX items relating to the provision of data services are excluded from the analysis, as per TCNZ's original data submission, because no direct correspondence exists to the LEC accounts and therefore neither a telecommunications-specific inflation nor an average asset age estimate is available for those items. However, their exclusion from TCNZ's cost base violates the balance between the different types of input used and between the inputs and outputs of the analysis. The effect of their inclusion could be significant in relation to the estimated efficiency scores resulting from the 'total cost' models, since they represent approximately [ $\gg$ ] of TCNZ's total asset base (under both the historic-cost and net-book-value definitions).

#### Currency conversion

Given the international nature of the analysis, the issue of adopting an equitable methodology for the implementation of currency conversion is pertinent. The approach adopted in most comparative-efficiency studies based on comparators from different countries is to use a mixture of PPP and exchange rates. The reasoning behind this treatment is that PPPs are more appropriate when considering assets or services traded in the domestic market, while exchange rates are more suitable for those traded in the international market. This separation of domestic and international traded assets and services is not without its issues; in addition, there are problems regarding the estimation of PPPs, which do not allow great confidence to be placed in the measure. However, previous academic studies that tested the sensitivity of the estimated efficiency results when both of these measures are used revealed that the effect of substituting PPPs with

exchange rates as the means of currency conversion has an insignificant impact on the estimates. Therefore, this approach was adopted for this analysis as well.

#### Cost separability

The issue of cost separability is only touched upon in this study, given the fact that little can be done to correct for any bias that might be introduced.

Cost separability is an economic concept based on the idea that, where a unit produces multiple outputs, that unit might be able to achieve some economies in producing these outputs, simply due to its multiple output set. Thus, for the unit to minimise the cost of producing an output, it must produce that output as part of a set of multiple outputs and not in isolation. The reason why separability might be important in this analysis is that TCNZ provides a number of services in addition to those provided by the LECs, in the form of mobile and international calls. These additional services should be considered as additional outputs, and economic theory suggests that there are likely to be economies of scope in producing these outputs—particularly in this case of Sales and Services costs, such as corporate functions, billing and marketing.

However, given that the existence of such possible economies of scale cannot be empirically proven or estimated with the available data, this study assumes that the cost of providing these different services is separable, and no adjustment is made to TCNZ's cost base.

#### A1.3 Operational characteristics

The overall number of the operating characteristics that were considered in the analysis and their level of detail were constrained by the amount of available information. In this instance, the constraint was imposed by the available LEC data, which does not include the level of detail necessary for the implementation of an advanced, top-down comparative-efficiency exercise. Therefore, in almost every circumstance, some adjustments to the available primary data needed to be undertaken, in order to ensure comparability between TCNZ and the LECs.

#### A1.3.1Access lines

Access lines are potentially important in the analysis because they provide a measure of the company's customer base and thus the scale of its network. Access lines can be divided into two major categories: switched and leased access lines. The difference between them is that switched access lines connect the end-user's interface (eg, modem or telephone) with the local exchange, which then switches (directs) the call to its destination (either final or intermediate), while leased access lines connect to end-users exclusively and thus require no switching.

One category of leased access lines (64k-equivalent intra-LATA leased lines) is not reported by the LECs. In TCNZ's original analysis, this missing figure was estimated based on the revenue received for the provision of leased-line access. Although this treatment could be considered justified, the analysis undertaken for this report did not make use of it, mainly because the analysis uses a significant number of assumptions already, and there would be little gain in accuracy by burdening the estimation procedure with one more. Moreover, for most LECs, the revenue received due to private local access lines represents a very small proportion of their total revenue (ranging from 0% to 7%, with most LECs reporting values closer to 2–3%). Therefore, an adjustment in the

number of leased access lines based on revenue would probably have had a minor impact. Consequently, the analysis assumes that no LEC provides local private-line services—this will be beneficial to TCNZ's final efficiency estimate since it reduces the output of its comparators.

The analysis undertaken for this study considers each category of access lines separately, but also tests whether the aggregation into a single measure is appropriate. In more detail, the analysis tests for whether the impact on costs is significant when the following categories are included:

- switched access lines, residential;
- switched access lines, business;
- switched access lines, other;
- switched access lines, total;
- leased access lines;
- total access lines.

#### A1.3.2Number of calls

The number of calls being routed through the fixed-line network could also be a significant factor for explaining costs, given that this measure represents network traffic. However, its appropriateness as a measure of traffic density could be quite low because it does not take into account the 'volume' of the network a call occupies.

Calls in New Zealand and Europe are divided into three broad categories: local, national and international. The handling of a call from each of these categories requires a different level of network utilisation; local calls are usually easier to handle, while long-distance calls could take up more network capacity. In comparative-efficiency exercises in the telecommunications industry, it is common practice to use the number of switches a call would occupy to be successfully handled as a proxy for the 'complexity' of each call. This subject is examined in greater detail in the next section.

Even though the 'number of calls' measure is not likely to be used as such in the final cost models (although, during the model formulation stage of this study, tests for its inclusion, in terms of its statistical validity, are undertaken), the accuracy of this measure is a significant issue since the 'number of calls' is used to construct the 'call minutes' variable.

When examining the LECs' accounting definitions, it was discovered that the number of local calls reported by the LECs includes both answered and unanswered calls, while the 'number of local calls' figure available for TCNZ includes only answered calls. Therefore, it is deemed necessary to scale down the LEC figures because using them as they stand results in artificially increasing one of the LECs' outputs, and hence reduces the accuracy of the resulting efficiency estimates. Since no estimate of the percentage of answered calls was available for the LECs, the percentage of such calls from TCNZ (76%) was used instead.

For the purposes of model formulation, the 'number of calls' variables considered are:

- number of local calls;
- number of other calls;
- total number of calls.

#### A1.3.3Call minutes

The call minutes factor for the LECs was also not directly available, since FCC requires the LECs to report only the number of calls. This factor was therefore constructed based on estimates of average call duration.

Call minutes are divided into local, national and international for TCNZ and local, intra-LATA and inter-LATA for the LECs, with the sum of inter- and intra-LATA calls being defined as long-distance (LECs do not provide international calling services and inter-LATA calls are partly handled by inter-exchange carriers). Local calling areas differ in size across both companies and countries, and long-distance calls require different numbers of switching and transmission stages. The use of unadjusted calling minutes is therefore not entirely suitable for a comparative-efficiency analysis, especially one based on international comparisons. One way of getting around this problem is to convert call minutes into switch minutes. Switch minutes take into account the number of switches a call passes through, and so companies with larger local areas will show a higher number of local switch minutes. The conversion involves multiplying call minutes by a routing factor, estimated according to the type of the call (local, national and international).

Depending on its type, a call can be routed through a number of switches, which in turn are divided into different categories. For the purposes of this analysis, two types of switch are of interest: local and main (also referred to as tandem). Thus, in order to arrive at a suitable measure of call minutes, two routing factors need to be taken into account. The routing factors used in this analysis for TCNZ were supplied directly by TCNZ and are assumed to be robust. The routing factors for the LECs are based on previous work commissioned by Oftel regarding BT's comparative efficiency, and, for the purposes of this analysis, are also assumed to be reasonable. Table A1.9 summarises the routing factors used.

| Type of call          | TCNZ | Type of call | LECs <sup>1</sup> |
|-----------------------|------|--------------|-------------------|
| 0800 calls            | [×]  | Local        | [×]               |
| 0900 calls            | [×]  | IntraLATA    | [×]               |
| Local-same LCA        | [×]  | InterLATA    | [×]               |
| To/from interconnect  | [×]  |              |                   |
| To/from international | [×]  |              |                   |
| Toll-different LCA    | [×]  |              |                   |
| Internet              | [⊁]  |              |                   |

 Table A1.9: Routing factors

*Note*: <sup>1</sup> Based on Oftel's previous methodology.

To arrive at a 'switch minutes' variable, the analysis would first need to obtain a robust measure of 'call minutes'. The 'call minutes' variable for the LECs is not directly available for local and intraLATA calls, since FCC requires the LECs to report only the

number of calls. The 'call minutes' variable for these categories is therefore constructed based on estimates of average call duration.

The 'call minutes' variable for the LECs constructed for this analysis is arrived at by dividing the number of calls into local, inter-LATA and intra-LATA, and multiplying each call type by an average call-duration figure. This was not necessary for inter-LATA calls since the data collated by the FCC includes inter-LATA billed access minutes. The average call-duration figures used were informed by the aggregate call minutes by type of call measure, published by the FCC and covering the whole of the USA.

Given that the above 'call minute' measure is constructed and not provided as collated and audited data, some sensitivity analysis is required to determine the effects of assuming a different set of average call-duration estimates. An alternative set of average call-duration estimates used for sensitivity analysis can be constructed based on the average call durations used for TCNZ. The approach adopted for this analysis first allocates the more disaggregated call categories available for TCNZ to the three LEC categories, and then constructs average call durations based on the proportion of calls found in each category. The average call durations used in the study are detailed in Table A1.10.

|                       | TCNZ             |                           | LECs         |                             |                                |  |  |
|-----------------------|------------------|---------------------------|--------------|-----------------------------|--------------------------------|--|--|
| Type of call          | Average duration | Allocated to LEC category | Type of call | Average duration (original) | Average duration (alternative) |  |  |
| 0800 calls            | [⊁]              | InterLATA                 | Local        | [×]                         | [×]                            |  |  |
| 0900 calls            | [×]              | InterLATA                 | IntraLATA    | [⊁]                         | [⊁]                            |  |  |
| Local (same LCA)      | [×]              | Local                     |              |                             |                                |  |  |
| To/from interconnect  | [⊁]              | IntraLATA                 |              |                             |                                |  |  |
| To/from international | [⊁]              | InterLATA                 |              |                             |                                |  |  |
| Toll (different LCA)  | [⊁]              | IntraLATA                 |              |                             |                                |  |  |
| Internet              | [⊁]              | Local                     |              |                             |                                |  |  |

Table A1.10: Average call durations by type of call

Source: TCNZ; OXERA analysis of SOCC.

At this stage, the use by the analysis of the international and inter-LATA call minutes needs clarification. A valid point could be that, since the analysis does not take into account costs incurred for the provision of international call services, and, in the USA, inter-LATA calls are handled by the IXCs, the relevant calls, and therefore call minutes and switch minutes, should not be considered in the analysis. The argument for the inclusion of such calls is that, in each case, their successful completion uses a part of the local network. This usage is reflected in the number of switches assigned to each call type. So, although inter-LATA calls are the most complex to carry from origination to termination, the number of switches assigned to them is the smallest of the three categories. This is because the routing factors used in the analysis do not represent the

actual number of switches required to carry a call to its completion, but rather the number of switches used to carry the call in the areas of interest to the analysis—ie, local and national calling areas for TCNZ and LCAs, and LATAs for the LECs.

The analysis considers each category of call minutes separately, but also tests whether the aggregation into a single measure can be regarded as best practice, similar to the treatment applied for the access lines variable. In more detail, the analysis looks at:

- local call minutes;
- other call minutes;
- total call minutes;
- total switched minutes.

#### A1.3.4Length of sheath

One factor that tends to affect the costs of all network companies is customer density and dispersion, or customer sparsity. One of the most common measures used to approximate customer dispersion is average population density across the geographical area serviced by the network company. However, due to the averaging process involved and the large size of the geographical areas that network companies tend to service, this measure is inappropriate since it does not accurately capture population distribution; a figure of 100 people/km<sup>2</sup> might apply to a company that services a very sparse area and a large customer concentration in an urban conurbation, or equally to a company that services a suburban area. The optimal network structure to adopt in each case is very different.

Comparative-efficiency studies for network companies have overcome this issue lately by using a measure of network length by customer served. In the case of a telecommunications operator, the preferred measure would be length of sheath per access line. This measure could be disaggregated to aerial length of sheath/access line and buried length of sheath/access line. However, this is not possible for the purposes of this analysis since the appropriate data was not available for TCNZ.

Another possible measure to capture customer dispersion could be length of local loop/access line. Larger values of this measure could indicate greater customer dispersion. Therefore, the analysis considers:

- total length of sheath/switched access line;
- total length of sheath/total access line;
- total length of sheath (only considered when an access line measure is also included in the modelling process).

#### A1.3.50ther environmental factors

The analysis also considers the statistical validity of the length of the local loop and the proportion of business to residential users. The length of the local loop can be viewed as an alternative indicator of customer dispersion, since an operator that serves disperse populations would be expected to have greater values in this indicator. However, there are several technologies available for serving remote communities, some of which use microwave (ie, radio), which could mean that this measure is not appropriate. Nevertheless, the analysis considers it in its variable selection process.

The proportion of business to residential users could also help to explain higher costs incurred for providing more advanced products and billing options to business customers. Therefore, this measure is also considered.

## Appendix 2: Results

### A2.1 OPEX modelling, including marketing

### A2.1.1Cobb–Douglas cost functions

#### SFA model, exponential distribution (model A1.e)

| Stoc. frontier normal/exponential model<br>Log likelihood = 16.68877 |                                             |                                              |                       |                         | chi2(2) =                                    | = 52<br>= 2863.09<br>= 0.0000                |
|----------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------------|-------------------------|----------------------------------------------|----------------------------------------------|
| lopecacc                                                             | Coef.                                       | Std. Err.                                    | Z                     | P> z                    | [95% Con:                                    | f. Interval]                                 |
| llines<br>lswminor<br>_cons                                          | .6139318<br>.3002742<br>1.387225            | .0950898<br>.0939936<br>.3615065             | 6.46<br>3.19<br>-3.84 | 0.000<br>0.001<br>0.000 | .4275591<br>.1160502<br>-2.095765            | .8003044<br>.4844982<br>6786857              |
| /lnsig2v<br>/lnsig2u                                                 | -4.393139<br>  -3.776792                    | .4524954<br>.5181635                         | -9.71<br>-7.29        | 0.000<br>0.000          | -5.280014<br>-4.792374                       | -3.506265<br>-2.76121                        |
| sigma_v<br>sigma_u<br>sigma2<br>lambda                               | .1111839<br>.1513143<br>.0352579<br>.360937 | .0251551<br>.0392028<br>.0098652<br>.0572709 |                       |                         | .0713608<br>.0910645<br>.0159224<br>1.248688 | .1732305<br>.2514263<br>.0545934<br>1.473186 |
| Likelihood-rat                                                       | tio test of si                              | igma_u=0: ch:                                | ibar2(01)             | = 4.14                  | Prob>=chil                                   | par2 = 0.021                                 |

#### SFA model, truncated normal distribution (model A1.t)

| Stoc. frontier                          |                                   |                                             | model                  | Wald                    | er of obs =<br>chi2(2) =<br>> chi2 =       | 52<br>2767.18<br>0.0000                     |
|-----------------------------------------|-----------------------------------|---------------------------------------------|------------------------|-------------------------|--------------------------------------------|---------------------------------------------|
| lopecacc                                | Coef.                             | Std. Err.                                   | Z                      | P> z                    | [95% Conf.                                 | Interval]                                   |
| llines<br>lswminor<br>_cons             | .6176697<br>.2977921<br>-1.415854 | .0939249<br>.0923029<br>.3641971            | 6.58<br>3.23<br>-3.89  | 0.000<br>0.001<br>0.000 | .4335804<br>.1168817<br>-2.129667          | .801759<br>.4787024<br>7020405              |
| /mu<br>/lnsigma2<br>/ilgtgamma          | 6702469<br>-1.738935<br>2.69037   | 2.29092<br>1.991234<br>2.000977             | -0.29<br>-0.87<br>1.34 | 0.770<br>0.383<br>0.179 | -5.160368<br>-5.641681<br>-1.231473        | 3.819874<br>2.163812<br>6.612213            |
| sigma2<br>gamma<br>sigma_u2<br>sigma_v2 | .936456<br>.1645423               | .3498746<br>.1190705<br>.347793<br>.0061757 |                        |                         | .0035469<br>.2259236<br>5171194<br>0009389 | 8.704251<br>.9986579<br>.846204<br>.0232693 |
| H0: No ineffic                          | ciency compone                    | ent:                                        | z =                    | 1.842                   | Prob>                                      | =z = 0.033                                  |

| <pre>SFA model, half normal distribution (model A1.h) Stoc. frontier normal/half-normal model Log likelihood = 16.639081</pre> |                                  |                                             |                       | Wald                    | r of obs =<br>chi2(2) =<br>> chi2 =          | 52<br>2709.62<br>0.0000                      |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|-----------------------|-------------------------|----------------------------------------------|----------------------------------------------|
| lopecacc                                                                                                                       | Coef.                            | Std. Err.                                   | Z                     | P> z                    | [95% Conf.                                   | Interval]                                    |
| llines  <br> swminor  <br>_cons                                                                                                | .619341<br>.2985367<br>-1.488417 | .09228<br>.0902004<br>.3522796              | 6.71<br>3.31<br>-4.23 | 0.000<br>0.001<br>0.000 | .4384754<br>.1217471<br>-2.178872            |                                              |
| /lnsig2v  <br>/lnsig2u                                                                                                         | -4.716083<br>-2.707444           | .6680699<br>.3979947                        | -7.06<br>-6.80        | 0.000                   | -6.025476<br>-3.4875                         | -3.40669<br>-1.927389                        |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda                                                                                   | .0756573                         | .0316015<br>.0513965<br>.0229645<br>.076302 |                       |                         | .0491569<br>.1748635<br>.0306477<br>2.580499 | .1820735<br>.3814809<br>.1206668<br>2.879597 |
| Likelihood-rat                                                                                                                 | tio test of s                    | igma_u=0: ch:                               | ibar2(01)             | = 4.04                  | Prob>=chiba                                  | r2 = 0.022                                   |

### A2.1.2Cobb–Douglas cost functions, using the alternative switch minutes figures

| SFA model, ex<br>Stoc. frontie:<br>Log likelihood | r normal/expo                        | nential mode                                |                       | Wald                    | er of obs<br>chi2(2)<br>> chi2              | = 52<br>= 2641.12<br>= 0.0000 |
|---------------------------------------------------|--------------------------------------|---------------------------------------------|-----------------------|-------------------------|---------------------------------------------|-------------------------------|
| lopecacc                                          | Coef.                                | Std. Err.                                   | Z                     | P> z                    | [95% Cor                                    | nf. Interval]                 |
| llines<br>lswminalt<br>_cons                      | .6569538<br>  .253049<br>  -1.211942 | .0922853<br>.0892208<br>.3450466            | 7.12<br>2.84<br>-3.51 | 0.000<br>0.005<br>0.000 | .4760779<br>.0781796<br>-1.888221           | .4279185                      |
| /lnsig2v<br>/lnsig2u                              |                                      | .4429425<br>.4811392                        | -10.00<br>-7.60       | 0.000<br>0.000          | -5.297138<br>-4.598896                      |                               |
| sigma_v<br>sigma_u<br>sigma2<br>lambda            | .1607443<br>.0377653                 | .0241866<br>.0386702<br>.0107156<br>.055169 |                       |                         | .0707524<br>.1003142<br>.016763<br>1.363769 | 2 .257578<br>.0587676         |
| Likelihood-rat                                    | tio test of s                        | igma_u=0: ch                                | ibar2(01)             | = 4.95                  | Prob>=chi                                   | bar2 = 0.013                  |

SFA model, exponential distribution (model A2.e)

| SFA model, true<br>Stoc. frontier<br>Log likelihood | normal/trunc                       | ated-normal                                  |                        | Numbe<br>Wald           | r of obs =<br>chi2(2) =<br>> chi2 =         | 52<br>2441.01<br>0.0000                      |
|-----------------------------------------------------|------------------------------------|----------------------------------------------|------------------------|-------------------------|---------------------------------------------|----------------------------------------------|
| lopecacc                                            | Coef.                              | Std. Err.                                    | Z                      | P> z                    | [95% Conf                                   | . Interval]                                  |
| llines<br>lswminalt<br>_cons                        | .6573828<br>.2536188<br>-1.241188  | .0925127<br>.0894339<br>.3699692             | 7.11<br>2.84<br>-3.35  | 0.000<br>0.005<br>0.001 | .4760613<br>.0783316<br>-1.966314           | .8387044<br>.4289059<br>5160615              |
| /mu<br>/lnsigma2<br>/ilgtgamma                      | -1.016227<br>-1.413416<br>3.040477 | 5.453453<br>3.642819<br>3.604743             | -0.19<br>-0.39<br>0.84 | 0.852<br>0.698<br>0.399 | -11.7048<br>-8.553211<br>-4.02469           | 9.672346<br>5.726378<br>10.10564             |
| sigma2<br>gamma<br>sigma_u2<br>sigma_v2             |                                    | .8863366<br>.1569803<br>.8837142<br>.0060519 |                        |                         | .0001929<br>.0175553<br>-1.49984<br>0007591 | 306.8559<br>.9999592<br>1.964256<br>.0229638 |
| H0: No ineffic                                      | ciency compone                     | ent:                                         | z =                    | 1.920                   | Prob:                                       | z = 0.027                                    |
| SFA model, hal<br>Stoc. frontier<br>Log likelihood  | r normal/half-                     | -normal mode                                 |                        | Wald                    | r of obs =<br>chi2(2) =<br>> chi2 =         | 52<br>2433.37<br>0.0000                      |
| lopecacc                                            | Coef.                              | Std. Err.                                    | Z                      | P> z                    | [95% Conf                                   | . Interval]                                  |
| llines<br>lswminalt<br>_cons                        | .6550851<br>.258959<br>-1.34034    | .0928433<br>.0890031<br>.3491372             | 7.06<br>2.91<br>-3.84  | 0.000<br>0.004<br>0.000 | .4731155<br>.0845162<br>-2.024637           | .8370547<br>.4334018<br>6560441              |
| /lnsig2v  <br>/lnsig2u                              | -4.740293<br>-2.617397             | .6738583<br>.3771956                         | -7.03<br>-6.94         | 0.000                   | -6.061031<br>-3.356687                      | -3.419555<br>-1.878107                       |
| sigma_v<br>sigma_u<br>sigma2<br>lambda              |                                    | .0314918<br>.0509537<br>.024128<br>.0753148  |                        |                         | .0482907<br>.186683<br>.0344387<br>2.742939 | .180906<br>.3909977<br>.1290187<br>3.038168  |

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 4.64 Prob>=chibar2 = 0.016

### A2.1.3Translog cost functions

#### SFA model, exponential distribution (model A3.e)

| Stoc. frontier |                | · ·          | ,         |        | r of obs =<br>chi2(5) = |             |
|----------------|----------------|--------------|-----------|--------|-------------------------|-------------|
| Log likelihood | a = 23.51247   | 7            |           | Prob   | > chi2 =                | • 0.0000    |
| lopecacc       | Coef.          | Std. Err.    | Z         | P> z   | [95% Conf               | . Interval] |
| llines         | 3.945636       | 1.439127     | 2.74      | 0.006  | 1.124998                | 6.766274    |
| lswminor       | -4.27728       | 1.582514     | -2.70     | 0.007  | -7.37895                | -1.175609   |
| lline2         | 1.229405       | .5572067     | 2.21      | 0.027  | .1372994                | 2.32151     |
| lswminor2      | 1.28116        | .4811724     | 2.66      | 0.008  | .3380796                | 2.224241    |
| lline_swmi~r   | -1.218025      | .5094978     | -2.39     | 0.017  | -2.216622               | 2194273     |
|                | 14.01798       | 4.248601     | 3.30      | 0.001  | 5.690872                | 22.34508    |
| /lnsig2v       | -4.045076      | .4394692     | -9.20     | 0.000  | -4.90642                | -3.183732   |
| /lnsig2u       | -5.030784      | 1.306784     | -3.85     | 0.000  | -7.592034               | -2.469535   |
| sigma v        | .1323192       | .0290751     |           |        | .086017                 | .2035454    |
| sigma u        | .0808312       | .0528145     |           |        | .0224601                | .2909024    |
| sigma2         | .0240421       | .00523       |           |        | .0137914                | .0342927    |
| lambda         | .6108805       | .0779947     |           |        | .4580136                | .7637474    |
| Likelihood-rat | tio test of si | igma_u=0: ch | ibar2(01) | = 0.42 | Prob>=chib              | ar2 = 0.259 |

SFA model, truncated normal distribution (model A3.t) Not applicable.

#### SFA model, half normal distribution (model A3.h)

| Stoc. fronties                                                                            |                                                                |                                                                                             | 1                                                                | Wald                                                   | r of obs =<br>chi2(5) =                                                                          | 52<br>3679.11                                                                               |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Log likelihood                                                                            | d = 23.56684 <sup>-</sup>                                      | /                                                                                           |                                                                  | Prob                                                   | > chi2 =                                                                                         | 0.0000                                                                                      |
| lopecacc                                                                                  | Coef.                                                          | Std. Err.                                                                                   | Z                                                                | P> z                                                   | [95% Conf.                                                                                       | Interval]                                                                                   |
| llines<br>lswminor<br>lline2<br>lswminor2<br>lline_swmi~r<br>cons<br>/lnsig2v<br>/lnsig2u | -4.051704<br>1.261562<br>1.280637<br>-1.234167<br>13.24858<br> | 1.543218<br>1.750664<br>.5541146<br>.4872731<br>.509878<br>4.853002<br>.8662773<br>1.094073 | 2.45<br>-2.31<br>2.28<br>2.63<br>-2.42<br>2.73<br>-5.04<br>-3.17 | 0.014<br>0.021<br>0.023<br>0.009<br>0.015<br>0.006<br> | .7524663<br>-7.482943<br>.1755171<br>.3255992<br>-2.233509<br>3.736874<br>-6.060859<br>-5.611338 | 6.80177<br>6204648<br>2.347606<br>2.235675<br>2348244<br>22.76029<br>-2.665115<br>-1.322651 |
| sigma_v<br>sigma_u<br>sigma2<br>lambda<br>Likelihood-rat                                  | .043951<br>  1.565173                                          | .0488896<br>.0966425<br>.0244655<br>.1427277                                                | <br>ibar2(01)                                                    | = 0.53                                                 | .0482949<br>.0604663<br>0040004<br>1.285432<br>Prob>=chiba:                                      | .2638018<br>.5161667<br>.0919024<br>1.844914<br>r2 = 0.234                                  |

## A2.1.4Translog cost functions, using the alternative switch minutes figures

| SFA model, exp<br>Stoc. frontier<br>Log likelihood                                                              | normal/expor                                                                                                                      | nential mode                                                                                                              |                                                                             | Wald                                                                                                | r of obs<br>chi2(3)<br>> chi2                                                                                           | =                                                                       | 52<br>3876.69<br>0.0000                                                                                    |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| lopecacc                                                                                                        | Coef.                                                                                                                             | Std. Err.                                                                                                                 | Z                                                                           | P> z                                                                                                | [95% Co                                                                                                                 | nf.                                                                     | Interval]                                                                                                  |
| llines  <br>lswminalt  <br>lswminalt2  <br>_cons                                                                | .6190678<br>7540658<br>.060257<br>7.684449                                                                                        | .0992181<br>.324377<br>.0194514<br>2.856709                                                                               | 6.24<br>-2.32<br>3.10<br>2.69                                               | 0.000<br>0.020<br>0.002<br>0.007                                                                    | .424603<br>-1.38983<br>.022132<br>2.08540                                                                               | 3<br>9                                                                  | .8135316<br>1182985<br>.0983811<br>13.2835                                                                 |
| /lnsig2v  <br>/lnsig2u                                                                                          | -4.536676<br>-3.883314                                                                                                            | .5328147<br>.5729432                                                                                                      | -8.51<br>-6.78                                                              | 0.000                                                                                               | -5.58097<br>-5.00626                                                                                                    |                                                                         | -3.492379<br>-2.760366                                                                                     |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda                                                                    | .103484<br>.143466<br>.0312914<br>1.386359                                                                                        | .0275689<br>.0410989<br>.0090962<br>.062816                                                                               |                                                                             |                                                                                                     | .061391<br>.081828<br>.013463<br>1.26324                                                                                | 4<br>2                                                                  | .1744374<br>.2515325<br>.0491196<br>1.509476                                                               |
| Likelihood-rat                                                                                                  | io test of si                                                                                                                     | iama u=0 · ch                                                                                                             | 1bar2(01)                                                                   | = 4 51                                                                                              | Prob>=ch                                                                                                                | 1 ha:                                                                   | $r_{2} = 0 0 1$                                                                                            |
| Likelihood-rat<br>SFA model, trur<br>Stoc. frontier<br>Log likelihood                                           | ncated normal                                                                                                                     | distribution (r                                                                                                           | nodel A4.                                                                   | <b>t)</b><br>Numbe<br>Wald                                                                          | Prob>=ch<br>r of obs<br>chi2(3)<br>> chi2                                                                               | 1Da:<br>=<br>=<br>=                                                     | 52<br>3897.50<br>0.0000                                                                                    |
| SFA model, trur<br>Stoc. frontier                                                                               | ncated normal                                                                                                                     | distribution (r                                                                                                           | nodel A4.                                                                   | <b>t)</b><br>Numbe<br>Wald                                                                          | r of obs<br>chi2(3)<br>> chi2                                                                                           | =<br>=<br>=                                                             | 52<br>3897.50                                                                                              |
| SFA model, trur<br>Stoc. frontier<br>Log likelihood                                                             | ncated normal<br>normal/trund<br>a = 19.996658                                                                                    | distribution (r<br>cated-normal                                                                                           | nodel A4.<br>model                                                          | <b>t)</b><br>Numbe<br>Wald<br>Prob                                                                  | r of obs<br>chi2(3)<br>> chi2                                                                                           | =<br>=<br>nf.<br>2<br>1<br>7                                            | 52<br>3897.50<br>0.0000                                                                                    |
| SFA model, trur<br>Stoc. frontier<br>Log likelihood<br>lopecacc  <br>lines  <br>lswminalt  <br>lswminalt2       | <pre>ncated normal normal/trunc a = 19.996658 Coef62307527434882 .0594147</pre>                                                   | distribution (r<br>cated-normal<br>3<br>Std. Err.<br>.0983504<br>.3194666<br>.0190961                                     | nodel A4.1<br>model<br>z<br>6.34<br>-2.33<br>3.11                           | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.020<br>0.002                                     | r of obs<br>chi2(3)<br>> chi2<br>                                                                                       | =<br>=<br>nf.<br>2<br>1<br>7<br>1<br><br>4<br>8                         | 52<br>3897.50<br>0.0000<br>Interval]<br>.8158384<br>1173452<br>.0968424                                    |
| SFA model, trur<br>Stoc. frontier<br>Log likelihood<br>lopecacc  <br>lines  <br>lswminalt  <br>lswminalt2  <br> | ncated normal<br>normal/trunc<br>a = 19.996658<br>Coef.<br>.6230752<br>.7434882<br>.0594147<br>7.558874<br>-1.375151<br>-1.314717 | distribution (r<br>cated-normal<br>3<br>Std. Err.<br>.0983504<br>.3194666<br>.0190961<br>2.811951<br>2.749429<br>1.455889 | nodel A4.1<br>model<br>z<br>6.34<br>-2.33<br>3.11<br>2.69<br>-0.50<br>-0.90 | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.020<br>0.002<br>0.002<br>0.007<br>0.617<br>0.367 | r of obs<br>chi2(3)<br>> chi2<br><br>[95% Co<br><br>.43031<br>-1.36963<br>.02198<br>2.04755<br><br>-6.76393<br>-4.16820 | =<br>=<br>nf.<br>2<br>1<br>7<br>1<br><br>4<br>8<br>7<br><br>8<br>8<br>5 | 52<br>3897.50<br>0.0000<br>Interval]<br>.8158384<br>1173452<br>.0968424<br>13.0702<br>4.013631<br>1.538774 |

## SFA model, half normal distribution (model A4.h)

| Stoc. frontier                                      | normal/half                                  | -normal mode                                | ,                             | Wald                             | chi2(3)                                       | = 52<br>= 3436.68<br>= 0.0000                |
|-----------------------------------------------------|----------------------------------------------|---------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|
| lopecacc                                            | Coef.                                        | Std. Err.                                   | Z                             | P> z                             | [95% Con                                      | f. Interval]                                 |
| llines  <br>  lswminalt  <br>  lswminalt2  <br>cons | .6204897<br>7208194<br>.0582092<br>7.337016  | .0901924<br>.301082<br>.0178256<br>2.652267 | 6.88<br>-2.39<br>3.27<br>2.77 | 0.000<br>0.017<br>0.001<br>0.006 | .4437158<br>-1.310929<br>.0232717<br>2.138667 | .7972636<br>1307095<br>.0931468<br>12.53536  |
| /lnsig2v  <br>/lnsig2u                              | -5.088603<br>-2.71555                        | .9890224<br>.4314033                        | -5.15<br>-6.29                | 0.000<br>0.000                   | -7.027052<br>-3.561085                        | -3.150155<br>-1.870015                       |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda        | .0785279<br>.2572324<br>.0723352<br>3.275684 | .0388329<br>.0554855<br>.0241571<br>.088934 |                               |                                  | .0297917<br>.1685467<br>.0249881<br>3.101376  | .2069915<br>.3925829<br>.1196822<br>3.449991 |
| Likelihood-rat                                      | tio test of s                                | igma_u=0: ch                                | ibar2(01)                     | = 4.13                           | Prob>=chi                                     | par2 = 0.021                                 |

#### A2.2 OPEX modelling, excluding marketing

#### A2.2.1Cobb–Douglas cost functions

#### SFA model, exponential distribution (model B1.e) Stoc. frontier normal/exponential model Number of obs = 52 Wald chi2(2) = 2292.41 Log likelihood = 12.617591Prob > chi2 = 0.0000 \_\_\_\_\_ lopexmrk | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+ lswminor .293816 .106605 2.76 0.006 .0848739 .502758 llines .6084076 .1070682 5.68 0.000 .3985578 .8182575 \_cons -1.312145 .4075004 -3.22 0.001 -2.110831 -.5134583 /lnsig2v | -4.211283 .4757289 -8.85 0.000 -5.143695 -3.278872 /lnsig2u | -3.646044 .5448423 -6.69 0.000 -4.713915 -2.578173 \_\_\_\_\_+\_\_\_\_+\_\_\_\_\_\_\_ sigma\_v | .1217675 .0289642 sigma\_u | .1615368 .0440061 .0763943 .1940895 .0947079 .2755224 .0184951 .0633478 1.197885 1.455315 sigma2 | .0409215 .0114422 lambda | 1.3266 .0656721

Likelihood-ratio test of sigma u=0: chibar2(01) = 3.42 Prob>=chibar2 = 0.032

| oc. frontien                                                                                                              | normal/truno<br>d = 12.72190 <sup>-</sup>                                                                                                                |                                                                                                       | model                          | Wald                                             | r of obs<br>chi2(2)<br>> chi2                                                  | =<br>=                                      | 5<br>2208.4<br>0.000                                                     |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|
| lopexmrk                                                                                                                  | Coef.                                                                                                                                                    | Std. Err.                                                                                             | Z                              | P> z                                             | <br>[95% Cc                                                                    | onf.                                        | Interval                                                                 |
| lswminor<br>llines<br>_cons                                                                                               | .6117063                                                                                                                                                 | .1023182<br>.1033316<br>.4078354                                                                      | 2.85<br>5.92<br>-3.28          | 0.004<br>0.000<br>0.001                          | .090976<br>.4091<br>-2.13740                                                   | 18                                          | .492056<br>.814232<br>538715                                             |
| /mu<br>/lnsigma2<br>/ilgtgamma                                                                                            |                                                                                                                                                          | 2.780358<br>2.283907<br>2.358149                                                                      | -0.26<br>-0.70<br>1.11         | 0.797<br>0.481<br>0.267                          | -6.16572<br>-6.08457<br>-2.00179                                               | 72                                          | 4.73307<br>2.8681<br>7.24197                                             |
| sigma2                                                                                                                    |                                                                                                                                                          | .457349<br>.1491579                                                                                   |                                |                                                  | .002277                                                                        | 13                                          | 17.6049                                                                  |
| gamma<br>sigma_u2<br>sigma_v2<br>): No ineffic                                                                            | .1866603                                                                                                                                                 | .455408<br>.0072677                                                                                   | z =                            | 1.626                                            | 70592<br>000656<br><br>Pr                                                      | 52<br>                                      | .027832                                                                  |
| sigma_u2<br>sigma_v2<br>): No ineffic<br>FA model, ha                                                                     | .1866603<br>.0135882<br>ciency compone                                                                                                                   | .455408<br>.0072677<br>ent:<br><b>Dution (model</b><br>-normal mode                                   | B1.h)                          | Numbe<br>Wald                                    | 000656                                                                         | 52<br>                                      | 1.07924<br>.027832<br>=z = 0.05<br>5<br>2143.3<br>0.000                  |
| sigma_u2<br>sigma_v2<br>): No ineffic<br>FA model, ha                                                                     | .1866603<br>.0135882<br>ciency compone<br>if normal distrik<br>c normal/half-<br>d = 12.551032                                                           | .455408<br>.0072677<br>ent:<br><b>Dution (model</b><br>-normal mode                                   | B1.h)                          | Numbe<br>Wald                                    | 000656<br>Pr<br>r of obs<br>chi2(2)<br>> chi2                                  | 62<br>cob><br>=<br>=<br>=                   | .027832<br>=z = 0.05                                                     |
| sigma_u2<br>sigma_v2<br>): No ineffic<br>FA model, ha<br>coc. frontien<br>og likelihood                                   | .1866603<br>.0135882<br>ciency compone<br>f normal distrik<br>c normal/half-<br>d = 12.551032<br>Coef.<br>.2975666<br>.6079636                           | .455408<br>.0072677<br>ent:<br>pution (model<br>-normal mode                                          | <b>B1.h)</b><br>1              | Numbe<br>Wald<br>Prob                            | 000656<br>Pr<br>r of obs<br>chi2(2)<br>> chi2                                  | 52<br>===<br>=<br>=<br>0nf.<br>73<br>52     | .027832<br>=z = 0.05<br>5<br>2143.3<br>0.000                             |
| sigma_u2<br>sigma_v2<br>): No ineffic<br>FA model, ha<br>coc. frontien<br>og likelihood<br>lopexmrk<br>lswminor<br>llines | .1866603<br>.0135882<br>ciency compone<br>f normal distrik<br>c normal/half-<br>d = 12.551032<br>Coef.<br>.2975666<br>.6079636<br>-1.422935<br>-4.437678 | .455408<br>.0072677<br>ent:<br>pution (model<br>-normal mode<br>2<br>Std. Err.<br>.0989045<br>.100526 | <b>B1.h)</b><br>1<br><br>z<br> | Numbe<br>Wald<br>Prob<br>P> z <br>0.003<br>0.000 | 000656<br>Pr<br>r of obs<br>chi2(2)<br>> chi2<br>[95% cc<br>.103717<br>.410936 | 52<br>= = = = = = = = = = = = = = = = = = = | .027832<br>=z = 0.05<br>2143.3<br>0.000<br>Interval<br>.491415<br>.80499 |

## A2.2.2Cobb–Douglas cost functions, using the alternative switch minutes figures

| SFA model, exp<br>Stoc. frontier<br>Log likelihood                                        | r normal/expor                                                                                                          | nential mode                                                                                           |                                                                    | Wald                                                                              | r of obs =<br>chi2(2) =<br>> chi2 =                                                                             | 52<br>2128.68<br>0.0000                                                                  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| lopexmrk                                                                                  | Coef.                                                                                                                   | Std. Err.                                                                                              | Z                                                                  | P> z                                                                              | [95% Conf.                                                                                                      | Interval]                                                                                |
| lswminalt<br>llines<br>_cons                                                              | .2320306<br>.6662597<br>1.101144                                                                                        | .0966617<br>.0997395<br>.3770596                                                                       | 2.40<br>6.68<br>-2.92                                              | 0.016<br>0.000<br>0.003                                                           | .042577<br>.4707738<br>-1.840167                                                                                | .4214841<br>.8617456<br>3621205                                                          |
| /lnsig2v<br>/lnsig2u                                                                      | -4.277006<br>-3.493638                                                                                                  | .452978<br>.4833132                                                                                    | -9.44<br>-7.23                                                     | 0.000                                                                             | -5.164826<br>-4.440915                                                                                          | -3.389185<br>-2.546362                                                                   |
| sigma_v<br>sigma_u<br>sigma2<br>lambda                                                    | .1178311<br>.1743276<br>.0442743<br>1.47947                                                                             | .0266875<br>.0421274<br>.0125857<br>.0605488                                                           |                                                                    |                                                                                   | .0755914<br>.1085594<br>.0196068<br>1.360796                                                                    | .183674<br>.2799398<br>.0689418<br>1.598143                                              |
|                                                                                           |                                                                                                                         | $i a m = 0 \cdot a h$                                                                                  | ibar2(01)                                                          | = 4.38                                                                            | Prob>=chiba                                                                                                     | r2 = 0.018                                                                               |
| Likelihood-rat<br>SFA model, true<br>Stoc. frontier<br>Log likelihood                     | ncated normal                                                                                                           | -<br>distribution (r<br>cated-normal                                                                   | nodel B2.                                                          | <b>t)</b><br>Numbe<br>Wald                                                        | r of obs =<br>chi2(2) =<br>> chi2 =                                                                             | 52<br>2049.53<br>0.0000                                                                  |
| SFA model, true<br>Stoc. frontier                                                         | ncated normal                                                                                                           | -<br>distribution (r<br>cated-normal                                                                   | nodel B2.                                                          | <b>t)</b><br>Numbe<br>Wald                                                        | r of obs =<br>chi2(2) =<br>> chi2 =                                                                             | 2049.53                                                                                  |
| SFA model, true<br>Stoc. frontier<br>Log likelihood                                       | ncated normal<br>r normal/trund<br>d = 11.403883                                                                        | distribution (r<br>cated-normal                                                                        | nodel B2.<br>model                                                 | t)<br>Numbe<br>Wald<br>Prob                                                       | r of obs =<br>chi2(2) =<br>> chi2 =                                                                             | 2049.53<br>0.0000                                                                        |
| SFA model, tru<br>Stoc. frontier<br>Log likelihood<br>lopexmrk<br>lswminalt<br>llines     | ncated normal<br>r normal/trund<br>d = 11.403883<br>Coef.<br>.2342525<br>.6648964<br>-1.134184                          | distribution (r<br>cated-normal<br>1<br>Std. Err.<br>.095974<br>.0991857                               | nodel B2.<br>model<br>z<br>2.44<br>6.70                            | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.015<br>0.000                            | r of obs =<br>chi2(2) =<br>> chi2 =<br>[95% Conf.<br>.0461469<br>.470496                                        | 2049.53<br>0.0000<br>Interval]<br>.422358<br>.8592968                                    |
| SFA model, tru<br>Stoc. frontier<br>Log likelihood<br>lopexmrk<br>lswminalt<br>llines<br> | ncated normal<br>r normal/trund<br>d = 11.403883<br>Coef.<br>.2342525<br>.6648964<br>-1.134184<br>-1.007378<br>-1.31805 | distribution (r<br>cated-normal<br>std. Err.<br>.095974<br>.0991857<br>.3861551<br>3.162224<br>2.07878 | model B2.<br>model<br>z<br>2.44<br>6.70<br>-2.94<br>-0.32<br>-0.63 | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.015<br>0.000<br>0.003<br>0.750<br>0.526 | r of obs =<br>chi2(2) =<br>> chi2 =<br>[95% Conf.<br>.0461469<br>.470496<br>-1.891034<br>-7.205223<br>-5.392384 | 2049.53<br>0.0000<br>Interval]<br>.422358<br>.8592968<br>3773334<br>5.190466<br>2.756283 |

| SFA model, ha<br>Stoc. frontie<br>Log likelihood                                                                                           | r normal/half                                                                                              | -normal model                                                                                                      |                                             | Wald                                                               | r of obs =<br>chi2(2) =<br>> chi2 =                                                               | 52<br>1915.70<br>0.0000                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| lopexmrk                                                                                                                                   | Coef.                                                                                                      | Std. Err.                                                                                                          | Z                                           | P> z                                                               | [95% Conf.                                                                                        | Interval]                                                                                  |
| lswminalt<br>llines<br>_cons                                                                                                               | .656215                                                                                                    | .0958271<br>.0995911<br>.3845955                                                                                   | 2.56<br>6.59<br>-3.24                       | 0.010<br>0.000<br>0.001                                            | .0578538<br>.4610201<br>-1.998193                                                                 | .4334892<br>.85141<br>4906058                                                              |
| /lnsig2v<br>/lnsig2u                                                                                                                       |                                                                                                            | .610511<br>.3796779                                                                                                | -7.36<br>-6.59                              | 0.000                                                              | -5.687048<br>-3.247953                                                                            | -3.293889<br>-1.759643                                                                     |
| sigma_v<br>sigma_u<br>sigma2<br>lambda                                                                                                     | .2859613<br>.0929892                                                                                       | .0323274<br>.0542866<br>.02727<br>.0787261                                                                         |                                             |                                                                    | .0582201<br>.1971134<br>.039541<br>2.545926                                                       | .1926376<br>.414857<br>.1464375<br>2.854527                                                |
|                                                                                                                                            | tio test of s                                                                                              | igma u=0: ch:                                                                                                      | <br>ibar2(01)                               | = 4.05                                                             | Prob>=chiba                                                                                       | ar2 = 0.022                                                                                |
| Likelihood-ra                                                                                                                              | CIO COSC OI S.                                                                                             | 5 _                                                                                                                |                                             |                                                                    |                                                                                                   |                                                                                            |
| A2.1.3Translo                                                                                                                              |                                                                                                            |                                                                                                                    |                                             |                                                                    |                                                                                                   |                                                                                            |
|                                                                                                                                            | <b>g cost functio</b><br>ponential distril<br>r normal/expor                                               | ns<br>bution (model                                                                                                |                                             | Wald                                                               | r of obs =<br>chi2(5) =<br>> chi2 =                                                               | 52<br>2951.54<br>0.0000                                                                    |
| A2.1.3Translo<br>SFA model, ex<br>Stoc. frontie                                                                                            | <b>g cost functio</b><br>ponential distril<br>r normal/expor<br>d = 19.39423                               | ns<br>bution (model                                                                                                |                                             | Wald                                                               | chi2(5) =<br>> chi2 =                                                                             | 2951.54                                                                                    |
| A2.1.3Translo<br>SFA model, ex<br>Stoc. frontie<br>Log likelihood                                                                          | g cost functio<br>ponential distril<br>r normal/expor<br>d = 19.39423<br>Coef.<br>                         | <b>ns</b><br>bution (model<br>nential mode:<br>7                                                                   |                                             | Wald<br>Prob                                                       | chi2(5) =<br>> chi2 =                                                                             | 2951.54<br>0.0000                                                                          |
| A2.1.3Translo<br>SFA model, ex<br>Stoc. fronties<br>Log likelihood<br>lopexmrk<br>lines<br>lswminor<br>lline2<br>lswminor2<br>lline_swmi~r | g cost functio<br>ponential distril<br>r normal/expor<br>d = 19.39423<br>Coef.<br><br><br><br><br><br><br> | ns<br>bution (model<br>hential model<br>7<br>Std. Err.<br>1.559034<br>1.702784<br>.6113414<br>.5274247<br>.5590999 | z<br>2.54<br>-2.57<br>2.21<br>2.61<br>-2.37 | Wald<br>Prob<br>P> z <br>0.011<br>0.010<br>0.027<br>0.009<br>0.018 | chi2(5) =<br>> chi2 =<br>[95% Conf.<br>.9114445<br>-7.715823<br>.1550504<br>.3413519<br>-2.419198 | 2951.54<br>0.0000<br>Interval]<br>7.022745<br>-1.041032<br>2.551465<br>2.408819<br>2275663 |

## SFA model, truncated normal distribution (model B3.t)

Not applicable.

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 0.31 Prob>=chibar2 = 0.288

| nber of obs = 52<br>.d chi2(5) = 2983.30                                                         |
|--------------------------------------------------------------------------------------------------|
| bb > chi2 = 0.0000                                                                               |
| [95% Conf. Interval]                                                                             |
| .58802637.090279-7.8374866092095.16442272.572363.30633642.432023-2.43993421585344.58115723.89019 |
| -5.51756 -2.573788<br>-6.1462039363362                                                           |
| .063369 .2761271<br>.0462774 .6261483<br>0065165 .0994653<br>.9736812 1.600031                   |
| 3                                                                                                |

### A2.1.4Translog cost functions, using the alternative switch minutes figures

| Stoc. frontier                                   | normal/expor                     | nential mode                                 | ,                             | Wald                             | er of obs =<br>chi2(3) =<br>> chi2 =          | 52<br>3344.11<br>0.0000                      |
|--------------------------------------------------|----------------------------------|----------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|
| lopexmrk                                         | Coef.                            | Std. Err.                                    | Z                             | P> z                             | [95% Conf                                     | . Interval]                                  |
| llines  <br> swminalt  <br> swminalt2  <br>_cons |                                  | .0993911<br>.3332849<br>.0197823<br>2.916327 | 6.32<br>-2.60<br>3.31<br>2.94 | 0.000<br>0.009<br>0.001<br>0.003 | .4335784<br>-1.518618<br>.0266416<br>2.859511 | .8231844<br>212165<br>.1041866<br>14.2913    |
| /lnsig2v  <br>/lnsig2u                           | -4.495893<br>-3.649905           | .5031172                                     | -8.94<br>-7.24                | 0.000                            | -5.481984<br>-4.638546                        | -3.509801<br>-2.661264                       |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda     | .1612253<br>.0371483<br>1.526525 | .0265686<br>.0406625<br>.0108389<br>.0601741 |                               |                                  | .0645063<br>.0983451<br>.0159045<br>1.408586  | .1729244<br>.2643101<br>.0583921<br>1.644464 |
| Likelihood-rat                                   | io test of s                     | igma_u=0: ch                                 | ibar2(01)                     | = 4.95                           | Prob>=chib                                    | ar2 = 0.013                                  |

#### SFA model, exponential distribution (model B4.e)

| Log likelihood                                     | r normal/truno                                    |                                              |                               | Number<br>Wald                   | r of obs =<br>chi2(3) =<br>> chi2 =           | 52<br>3292.48<br>0.0000                      |
|----------------------------------------------------|---------------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|
| lopexmrk                                           | Coef.                                             | Std. Err.                                    | Z                             | P> z                             | [95% Conf.                                    | Interval]                                    |
| llines<br>lswminalt<br>lswminalt2<br>_cons         | 8583919<br>.0650392                               | .0982348<br>.3322286<br>.0196516<br>2.905089 | 6.39<br>-2.58<br>3.31<br>2.93 | 0.000<br>0.010<br>0.001<br>0.003 | .435155<br>-1.509548<br>.0265229<br>2.818943  | .8202283<br>2072357<br>.1035556<br>14.20668  |
| /mu<br>/lnsigma2<br>/ilgtgamma                     |                                                   | 11.08229<br>4.264335<br>4.219509             | -0.19<br>-0.20<br>0.87        | 0.849<br>0.839<br>0.386          | -23.82914<br>-9.222039<br>-4.612821           | 19.61265<br>7.493848<br>11.92735             |
| sigma2<br>gamma<br>sigma_u2<br>sigma_v2            | .9748461<br>.4108317                              | 1.797129<br>.1034675<br>1.79518<br>.0059024  |                               |                                  | .0000988<br>.0098263<br>-3.107657<br>0009677  | 1796.953<br>.9999934<br>3.929321<br>.0221691 |
| HO: No ineffic                                     | ciency compone                                    | ent:                                         | z =                           | 1.702                            | Prob>                                         | =z = 0.044                                   |
| SFA model, tru<br>Stoc. frontie:<br>Log likelihood | r normal/half-                                    | -normal mode                                 |                               | Number<br>Wald                   | r of obs =<br>chi2(3) =<br>> chi2 =           | 52<br>2707.45<br>0.0000                      |
| lopexmrk                                           | Coef.                                             | Std. Err.                                    | Z                             | P> z                             | [95% Conf.                                    | Interval]                                    |
|                                                    |                                                   |                                              |                               |                                  |                                               |                                              |
| llines<br>lswminalt<br>lswminalt2<br>_cons         | 8387096<br>.0649468                               | .0949837<br>.3269402<br>.0193516<br>2.882715 | 6.40<br>-2.57<br>3.36<br>2.92 | 0.000<br>0.010<br>0.001<br>0.003 | .4220122<br>-1.479501<br>.0270184<br>2.771503 | .7943415<br>1979187<br>.1028752<br>14.07154  |
| lswminalt<br>lswminalt2                            | 8387096<br>  .0649468<br>  8.42152<br>  -4.821734 | .3269402<br>.0193516                         | -2.57<br>3.36                 | 0.010<br>0.001                   | -1.479501<br>.0270184                         | 1979187<br>.1028752                          |

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 4.21 Prob>=chibar2 = 0.020

### A2.3 Total cost modelling, including marketing

#### A2.3.1Cobb–Douglas cost functions

#### SFA model, exponential distribution (model C1.e)

| Stoc. frontier                                                                    |                                                                                             |                                                                                   | 1                                                             | Wald                                                                                 | r of obs =<br>chi2(3) =<br>> chi2 =                                                                           | 52<br>5831.51<br>0.0000                                                                             |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| lcostov                                                                           | Coef.                                                                                       | Std. Err.                                                                         | Z                                                             | P> z                                                                                 | [95% Conf.                                                                                                    | Interval]                                                                                           |
| lswminor<br>llines<br>lnsheath<br>_cons                                           |                                                                                             | .0727603<br>.0658562<br>.0342445<br>.256365                                       | 4.46<br>7.97<br>2.89<br>-4.42                                 | 0.000<br>0.000<br>0.004<br>0.000                                                     | .1818711<br>.3961089<br>.0317822<br>-1.635941                                                                 | .4670864<br>.6542603<br>.1660182<br>6310087                                                         |
| /lnsig2v<br>/lnsig2u                                                              | -5.27637<br>-4.154304                                                                       | .467325<br>.4408825                                                               | -11.29<br>-9.42                                               | 0.000                                                                                | -6.192311<br>-5.018418                                                                                        | -4.36043<br>-3.290191                                                                               |
| sigma_v<br>sigma_u<br>sigma2<br>lambda                                            | .1252865<br>.0208077                                                                        | .0167047<br>.0276183<br>.0061395<br>.038545                                       |                                                               |                                                                                      | .0452227<br>.0813325<br>.0087745<br>1.676935                                                                  | .1130172<br>.1929942<br>.0328408<br>1.828029                                                        |
| Likelihood-rat                                                                    | tio test of s                                                                               | igma_u=0: ch                                                                      | ibar2(01)                                                     | ) = 7.61                                                                             | Prob>=chiba                                                                                                   | r2 = 0.003                                                                                          |
| SFA model, true<br>Stoc. frontier<br>Log likelihood                               | r normal/truno                                                                              | cated-normal                                                                      |                                                               | ,<br>Numbe<br>Wald                                                                   | r of obs =<br>chi2(3) =<br>> chi2 =                                                                           | 49<br>6053.67<br>0.0000                                                                             |
| Stoc. frontier                                                                    | r normal/truno<br>d = 34.759249                                                             | cated-normal                                                                      |                                                               | ,<br>Numbe<br>Wald                                                                   | chi2(3) =                                                                                                     | 6053.67<br>0.0000                                                                                   |
| Stoc. frontier                                                                    | r normal/truno<br>d = 34.759249                                                             | cated-normal                                                                      | model                                                         | Numbe<br>Wald<br>Prob                                                                | chi2(3) =<br>> chi2 =                                                                                         | 6053.67<br>0.0000                                                                                   |
| Stoc. frontier<br>Log likelihood<br>lcostov<br>lswminor<br>llines<br>lnsheath     | r normal/trund<br>d = 34.759249<br>Coef.<br>.2755546<br>.557972<br>1.1178743<br>9698248<br> | Std. Err.<br>.0723001<br>.0662226<br>.0350169                                     | model<br>z<br>3.81<br>8.43<br>3.37                            | Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.000<br>0.001                            | chi2(3) =<br>> chi2 =<br>[95% Conf.<br>.133849<br>.4281781<br>.0492424                                        | 6053.67<br>0.0000<br>Interval]<br>.4172603<br>.6877659<br>.1865063                                  |
| Stoc. frontier<br>Log likelihood<br>lcostov<br>lswminor<br>llines<br>lnsheath<br> | r normal/trund<br>d = 34.759249<br>Coef.<br>.2755546<br>.557972<br>.1178743<br>9698248<br>  | Std. Err.<br>.0723001<br>.0662226<br>.0350169<br>.2532301<br>1.166797<br>1.468076 | model<br>z<br>3.81<br>8.43<br>3.37<br>-3.83<br>-0.39<br>-1.72 | Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.000<br>0.001<br>0.000<br>0.698<br>0.085 | chi2(3) =<br>> chi2 =<br>[95% Conf.<br>.133849<br>.4281781<br>.0492424<br>-1.466147<br>-2.739386<br>-5.407096 | 6053.67<br>0.0000<br>Interval]<br>.4172603<br>.6877659<br>.1865063<br>473503<br>1.834375<br>.347656 |

H0: No inefficiency component: z = 1.800 Prob>=z = 0.036

\_\_\_\_\_61 \_\_\_\_\_

| SFA model, hal<br>Stoc. frontier<br>Log likelihood | r normal/half-                                | -normal mode                                 | ,                              |                                  | r of obs =<br>chi2(2) =<br>chi2 =             | 52                                          |
|----------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------|---------------------------------------------|
| lcostov                                            | Coef.                                         | Std. Err.                                    | Z                              | P> z                             | [95% Conf.                                    | Interval]                                   |
| lswminor<br>llines<br>lnsheath<br>_cons            | .2595651<br>.5790844<br>.1188129<br>-1.086059 | .0555432<br>.017302<br>.0276415<br>.4066859  | 4.67<br>33.47<br>4.30<br>-2.67 | 0.000<br>0.000<br>0.000<br>0.008 | .1507025<br>.5451732<br>.0646364<br>-1.883149 | .3684278<br>.6129957<br>.1729893<br>2889697 |
| /lnsig2v  <br>/lnsig2u                             | -30.86469<br>-2.785376                        | 97.68653<br>.1961167                         | -0.32<br>-14.20                | 0.752<br>0.000                   | -222.3268<br>-3.169758                        | 160.5974<br>-2.400995                       |
| sigma_v<br>sigma_u<br>sigma2<br>lambda             | 1251255                                       | 9.70e-06<br>.0243583<br>.0121016<br>.0243583 |                                |                                  | 5.28e-49<br>.2049726<br>.0379873<br>1251255   | 7.47e+34<br>.3010445<br>.0854245<br>1251255 |
| Likelihood-rat                                     | tio test of si                                | igma_u=0: ch                                 | ibar2(01)                      | = 12.28                          | Prob>=chiba                                   | r2 = 0.000                                  |

### A2.3.2Cobb–Douglas cost functions, using the alternative switch minutes figures

| SFA Model, exp<br>Stoc. frontier<br>Log likelihood | normal/expor           | nential mode                                 | ,                             | Wald                             | er of obs =<br>chi2(3) =<br>> chi2 =          | 52<br>5262.44<br>0.0000                      |
|----------------------------------------------------|------------------------|----------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|
| lcostov                                            | Coef.                  | Std. Err.                                    | Z                             | P> z                             | [95% Conf.                                    | Interval]                                    |
| lswminalt<br>llines<br>lnsheath<br>_cons           | .5456243               | .0688861<br>.0648581<br>.0330723<br>.2474989 | 4.24<br>8.41<br>3.33<br>-4.07 | 0.000<br>0.000<br>0.001<br>0.000 | .1569639<br>.4185049<br>.0453321<br>-1.493571 | .4269924<br>.6727438<br>.1749729<br>5233931  |
| /lnsig2v<br>/lnsig2u                               | -5.267616<br>-4.085494 | .4488309<br>.4243459                         | -11.74<br>-9.63               | 0.000<br>0.000                   | -6.147309<br>-4.917197                        | -4.387924<br>-3.253791                       |
| sigma_v<br>sigma_u<br>sigma2<br>lambda             | .0219707               | .016114<br>.0275129<br>.006464<br>.0374903   |                               |                                  | .0462518<br>.0855548<br>.0093015<br>1.732424  | .1114742<br>.1965387<br>.0346399<br>1.879383 |
| Likelihood-rat                                     | tio test of s          | igma_u=0: ch                                 | hibar2(01)                    | = 8.98                           | Prob>=chiba                                   | ar2 = 0.001                                  |

#### SFA model, exponential distribution (model C2.e)

| SFA model, true<br>Stoc. frontier<br>Log likelihood | normal/trunc         | ated-normal                                  |                                | Number                                    | f of obs =<br>hi2(3) =<br>chi2 =              | 50<br>4.896e+08<br>0.0000                   |
|-----------------------------------------------------|----------------------|----------------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------------|---------------------------------------------|
| lcostov                                             | Coef.                | Std. Err.                                    | Z                              | P> z                                      | [95% Conf.                                    | Interval]                                   |
| lswminalt<br>llines<br>lnsheath<br>_cons            | .5365093             | .0556586<br>.0242943<br>.0237627<br>.3543056 | 5.08<br>22.08<br>5.36<br>-2.78 | 0.000<br>0.000<br>0.000<br>0.005          | .1736981<br>.4888933<br>.0806813<br>-1.680098 | .391876<br>.5841252<br>.1738293<br>2912453  |
| /mu<br>/lnsigma2<br>/ilgtgamma                      |                      | .0428981<br>.0497937<br>1344.393             | 2.29<br>-63.86<br>0.02         | 0.022<br>0.000<br>0.982                   | .0140845<br>-3.277418<br>-2604.8              | .1822421<br>-3.08223<br>2665.123            |
| sigma2<br>gamma<br>sigma_u2<br>sigma_v2             | 1<br>.041593         | .0020711<br>1.07e-10<br>.0020711<br>4.45e-12 |                                |                                           | .0377256<br>.0375338<br>-8.72e-12             | .0458569<br>1<br>.0456522<br>8.73e-12       |
| H0: No ineffic                                      | ciency compone       | nt:                                          | z =                            | 2.621                                     | Prob>                                         | =z = 0.004                                  |
| SFA model, hal<br>Stoc. frontier<br>Log likelihood  | r normal/half-       | normal mode                                  |                                |                                           | f of obs =<br>hi2(2) =<br>chi2 =              | 52<br>•                                     |
| lcostov                                             | Coef.                | Std. Err.                                    | Z                              | P> z                                      | [95% Conf.                                    | Interval]                                   |
| lswminalt<br>llines<br>lnsheath<br>_cons            | .5356212             | .0667901<br>.029152<br>.0285153<br>.4251681  | 4.26<br>18.37<br>4.43<br>-2.35 | 0.000<br>0.000<br>0.000<br>0.000<br>0.019 | .1539153<br>.4784844<br>.0704979<br>-1.831937 | .4157277<br>.5927581<br>.1822757<br>1653084 |
| /lnsig2v<br>/lnsig2u                                |                      | 95.39663<br>.1961155                         | -0.33<br>-13.94                | 0.744<br>0.000                            | -218.1245<br>-3.119017                        | 155.8234<br>-2.350258                       |
| sigma_v<br>sigma_u<br>sigma2<br>lambda              | .2547892<br>.0649175 | 8.21e-06<br>.0249841<br>.0127313<br>.024984  |                                |                                           | 4.31e-48<br>.2102394<br>.0399646<br>1480609   | 6.86e+33<br>.3087791<br>.0898705<br>1480609 |

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 13.43 Prob>=chibar2 = 0.000

### A2.3.3Translog cost functions

### SFA model, exponential distribution (model C3.e)

| SFA model, exp<br>Stoc. frontier<br>Log likelihood | r normal/expor                                   | nential mode:                                | ,                             | Wald                             | r of obs =<br>chi2(3) =<br>> chi2 =          | 52<br>7738.59<br>0.0000                     |
|----------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------|
| lcostov                                            | Coef.                                            | Std. Err.                                    | Z                             | ₽> z                             | [95% Conf                                    | . Interval]                                 |
| llines<br>lswminor<br>lswminor2<br>_cons           | .4593101<br> 5030015<br>  .0553727<br>  6.882149 | .063771<br>.2620614<br>.0149163<br>2.260352  | 7.20<br>-1.92<br>3.71<br>3.04 | 0.000<br>0.055<br>0.000<br>0.002 | .3343212<br>-1.016632<br>.0261373<br>2.45194 | .584299<br>.0106295<br>.0846081<br>11.31236 |
| /lnsig2v<br>/lnsig2u                               | -5.261313<br>-4.293749                           | .5931522<br>.5359248                         | -8.87<br>-8.01                | 0.000                            | -6.42387<br>-5.344142                        | -4.098756<br>-3.243356                      |
| sigma_v<br>sigma_u<br>sigma2<br>lambda             | .0720311<br>.1168488<br>.0188421<br>1.622198     | .0213627<br>.0313111<br>.0057709<br>.0481585 |                               |                                  | .0402786<br>.0691089<br>.0075313<br>1.527809 | .128815<br>.1975669<br>.030153<br>1.716587  |
| Likelihood-rat                                     | tio test of s                                    | igma_u=0: ch:                                | ibar2(01)                     | = 3.93                           | Prob>=chib                                   | ar2 = 0.024                                 |

#### SFA model, truncated normal distribution (model C3.t)

Not applicable.

#### SFA model, half normal distribution (model C3.h)

| Stoc. frontier<br>Log likelihood                           |                                                         |                                                         | el                                     | Wald                             | er of obs =<br>chi2(3) =<br>> chi2 =                     | 52<br>9019.80<br>0.0000                                  |
|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| lcostov                                                    | Coef.                                                   | Std. Err.                                               | Z                                      | P> z                             | [95% Conf.                                               | Interval]                                                |
| llines  <br>lswminor  <br>lswminor2  <br>cons  <br>tnsig2v | .4494839<br>4647877<br>.0541041<br>6.502353<br>6.380897 | .0617665<br>.2044759<br>.0117103<br>1.81183<br>1.137616 | 7.28<br>-2.27<br>4.62<br>3.59<br>-5.61 | 0.000<br>0.023<br>0.000<br>0.000 | .3284238<br>8655531<br>.0311524<br>2.951233<br>-8.610583 | .5705439<br>0640224<br>.0770558<br>10.05347<br>-4.151211 |
| /lnsig2u  <br>+                                            | -3.119489                                               | .3112167                                                | -10.02                                 | 0.000                            | -3.729462                                                | -2.509515                                                |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda               | .0411534<br>.2101898<br>.0458734<br>5.10747             | .0234084<br>.0327073<br>.0126123<br>.0509063            |                                        |                                  | .0134969<br>.1549379<br>.0211538<br>5.007696             | .1254804<br>.285145<br>.0705929<br>5.207245              |
| Likelihood-rat                                             | io test of s                                            | igma_u=0: ch                                            | ibar2(01)                              | = 5.47                           | Prob>=chiba                                              | r2 = 0.010                                               |

## A2.3.4Translog cost functions, using the alternative switch minutes figures

| SFA model, exp<br>Stoc. frontier<br>Log likelihood                                                     | r normal/expor                                                                                                                                                                   | nential mode                                                                                                             |                               | Wald                                                                                       | r of obs =<br>chi2(3) =<br>> chi2 =                                                                                     | 52<br>7870.02<br>0.0000                                                                                      |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| lcostov                                                                                                | Coef.                                                                                                                                                                            | Std. Err.                                                                                                                | Z                             | P> z                                                                                       | [95% Conf.                                                                                                              | Interval]                                                                                                    |
| llines<br>lswminalt<br>lswminalt2<br>_cons                                                             | .469277<br>669715<br>.0640319<br>8.291283                                                                                                                                        | .0607939<br>.2367569<br>.0137755<br>2.077272                                                                             | 7.72<br>-2.83<br>4.65<br>3.99 | 0.000<br>0.005<br>0.000<br>0.000                                                           | .3501231<br>-1.13375<br>.0370323<br>4.219905                                                                            | .5884309<br>20568<br>.0910314<br>12.36266                                                                    |
| /lnsig2v  <br>/lnsig2u                                                                                 | -5.325934<br>-4.233364                                                                                                                                                           | .4917012<br>.4600666                                                                                                     | -10.83<br>-9.20               | 0.000                                                                                      | -6.289651<br>-5.135078                                                                                                  | -4.362218<br>-3.33165                                                                                        |
| sigma_v<br>sigma_u<br>sigma2<br>lambda                                                                 |                                                                                                                                                                                  | .0171459<br>.027703<br>.0057788<br>.039534                                                                               |                               |                                                                                            | .0430744<br>.0767241<br>.0080411<br>1.649341                                                                            | .1129163<br>.1890347<br>.0306936<br>1.804312                                                                 |
|                                                                                                        |                                                                                                                                                                                  | iama u=0• ch                                                                                                             | ibar2(01)                     | = 7.94                                                                                     | Prob>=chiba                                                                                                             | r2 = 0.002                                                                                                   |
| Likelihood-rat<br>SFA model, true<br>Stoc. frontier<br>Log likelihood                                  | ncated normal                                                                                                                                                                    | distribution (r<br>cated-normal                                                                                          | nodel C4.                     | t)<br>Numbe<br>Wald                                                                        | r of obs =<br>chi2(3) =<br>> chi2 =                                                                                     | 52<br>11574.72<br>0.0000                                                                                     |
| SFA model, true<br>Stoc. frontier                                                                      | ncated normal                                                                                                                                                                    | distribution (r<br>cated-normal                                                                                          | nodel C4.                     | t)<br>Numbe<br>Wald                                                                        | r of obs =<br>chi2(3) =<br>> chi2 =                                                                                     | 52<br>11574.72                                                                                               |
| SFA model, tru<br>Stoc. frontier<br>Log likelihood                                                     | ncated normal<br>c normal/trunc<br>d = 34.381722<br>Coef.<br>.4516657<br>5965388                                                                                                 | <b>distribution (r</b><br>cated-normal                                                                                   | nodel C4.<br>model            | t)<br>Numbe<br>Wald<br>Prob                                                                | r of obs =<br>chi2(3) =<br>> chi2 =                                                                                     | 52<br>11574.72<br>0.0000                                                                                     |
| SFA model, tru<br>Stoc. frontier<br>Log likelihood<br>lcostov<br>llines<br>lswminalt                   | ncated normal<br>c normal/trunc<br>d = 34.381722<br>Coef.<br>.4516657<br>5965388<br>.0609864                                                                                     | distribution (r<br>cated-normal<br>2<br>Std. Err.<br>.0563272<br>.1796494<br>.010433                                     | model C4.<br>model<br>z<br>   | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.001<br>0.000                            | r of obs =<br>chi2(3) =<br>> chi2 =<br>[95% Conf.<br>.3412665<br>9486451<br>.0405381                                    | 52<br>11574.72<br>0.0000<br>Interval]<br>.562065<br>2444325<br>.0814348                                      |
| SFA model, tru<br>Stoc. frontier<br>Log likelihood<br>lcostov<br>llines<br>lswminalt<br>lswminalt2<br> | ncated normal<br>normal/trund<br>d = 34.381722<br>Coef.<br>.4516657<br>.5965388<br>.0609864<br>7.682127<br>.0153262<br>-3.058782<br>3.560954<br>.0469448<br>.9723732<br>.0456479 | distribution (r<br>cated-normal<br>2<br>Std. Err.<br>.0563272<br>.1796494<br>.010433<br>1.597038<br>.2123261<br>.6898073 | model C4.<br>model<br>z<br>   | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.001<br>0.000<br>0.000<br>0.942<br>0.000 | r of obs =<br>chi2(3) =<br>> chi2 =<br>[95% Conf.<br>.3412665<br>.9486451<br>.0405381<br>4.55199<br>4008253<br>-4.41078 | 52<br>11574.72<br>0.0000<br>Interval]<br>.562065<br>2444325<br>.0814348<br>10.81226<br>.4314776<br>-1.706785 |

### SFA model, half normal distribution (model C4.h)

| Stoc. frontier<br>Log likelihood                                                 | normal/half                                                          | -normal mode                                                         | ,                                                | Wald                                               | er of obs<br>chi2(3)<br>> chi2                              | =<br>=                   | 52<br>11517.11<br>0.0000                                   |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------|------------------------------------------------------------|
| lcostov                                                                          | Coef.                                                                | Std. Err.                                                            | Z                                                | P> z                                               | [95% Ca                                                     | onf.                     | Interval]                                                  |
| llines  <br> swminalt  <br> swminalt2  <br>cons  <br>+<br>/lnsig2v  <br>/lnsig2u | .4522031<br>595036<br>.0608711<br>7.667253<br>-6.614366<br>-3.040783 | .0554448<br>.1788308<br>.0103126<br>1.584814<br>.9313988<br>.2580693 | 8.16<br>-3.33<br>5.90<br>4.84<br>-7.10<br>-11.78 | 0.000<br>0.001<br>0.000<br>0.000<br>0.000<br>0.000 | .343533<br>94553<br>.040658<br>4.5610<br>-8.4398<br>-3.5465 | 79<br>37<br>73<br><br>74 | .5608729<br>244534<br>.0810835<br>10.77343<br>             |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda  <br>Likelihood-rat                 | .0366192<br>.2186263<br>.0491384<br>5.970266                         | .0170535<br>.0282104<br>.0118328<br>.038915                          |                                                  | = 8.46                                             | .014699<br>.169772<br>.025946<br>5.89399<br>Prob>=ch        | 27<br>65<br>94<br>       | .0912248<br>.2815379<br>.0723303<br>6.046538<br>r2 = 0.002 |

#### A2.4 Total cost modelling, excluding marketing

#### A2.4.1Cobb–Douglas cost functions

#### SFA model, exponential distribution (model D1.e) Number of obs = 52 Wald chi2(2) = 3985.02 Stoc. frontier normal/exponential model Log likelihood = 26.360343Prob > chi2 = 0.0000 \_\_\_\_\_ lcostalt | Coef. Std. Err. z P>|z| [95% Conf. Interval] \_\_\_\_\_+ lswminor | .4498829 .0688378 6.54 0.000 .3149632 .5848025 llines | .461016 .069606 6.62 0.000 .3245908 .5974412 \_\_cons | -1.365647 .2991025 -4.57 0.000 -1.951877 -.7794165 /lnsig2v | -5.05279 .5135036 -9.84 0.000 -6.059238 -4.046341 /lnsig2u | -3.91842 .4599183 -8.52 0.000 -4.819843 -3.016997 \_\_\_\_\_+\_\_\_\_+\_\_\_\_\_\_\_ sigma\_v | .0799467 .0205265 .048334 .1322355 sigma\_u | .1409697 .0324173 .0898223 .221242 sigma2 | .0262639 .0078706 .0416901 .0108378 1.671574 1.855018 lambda | 1.763296 .0467978 \_\_\_\_\_

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 7.69 Prob>=chibar2 = 0.003

| SFA model, tru<br>Stoc. frontier<br>Log likelihood | r normal/trunc                    | ated-normal                                  |                        | Numbe<br>Wald           | r of obs =<br>chi2(2) =<br>> chi2 =          | 52<br>3656.79<br>0.0000                     |
|----------------------------------------------------|-----------------------------------|----------------------------------------------|------------------------|-------------------------|----------------------------------------------|---------------------------------------------|
| lcostalt                                           | Coef.                             | Std. Err.                                    | Z                      | P> z                    | [95% Conf.                                   | Interval]                                   |
| lswminor<br>llines<br>_cons                        | .4534802<br>.4592495<br>.1.421543 | .0684724<br>.0693168<br>.3201578             | 6.62<br>6.63<br>-4.44  | 0.000<br>0.000<br>0.000 | .3192767<br>.323391<br>-2.049041             | .5876836<br>.595108<br>7940456              |
| /mu<br>/lnsigma2<br>/ilgtgamma                     | -2.058014                         | 1.789447<br>1.994967<br>1.723914             | -0.27<br>-1.03<br>1.84 | 0.788<br>0.302<br>0.066 | -3.989391<br>-5.968077<br>2047504            | 3.025111<br>1.852049<br>6.552868            |
| sigma2<br>gamma<br>sigma_u2<br>sigma_v2            | .9598463<br>.1225794              | .2547719<br>.066442<br>.2523521<br>.0041609  |                        |                         | .0025592<br>.4489905<br>3720216<br>0030274   | 6.372863<br>.998576<br>.6171805<br>.0132832 |
| H0: No ineffic                                     | ciency compone                    | ent:                                         | z =                    | 2.577                   | Prob>                                        | z = 0.005                                   |
| SFA model, ha<br>Stoc. frontier<br>Log likelihood  | r normal/half-                    | normal mode                                  |                        | Wald                    | r of obs =<br>chi2(2) =<br>> chi2 =          | 52<br>3576.99<br>0.0000                     |
| lcostalt                                           | Coef.                             | Std. Err.                                    | Z                      | P> z                    | [95% Conf.                                   | Interval]                                   |
| lswminor<br>llines<br>_cons                        | .4538761                          | .0658569<br>.0688547<br>.2854606             | 6.98<br>6.59<br>-5.20  | 0.000<br>0.000<br>0.000 | .3306208<br>.3189234<br>-2.043413            | .5887753<br>.5888287<br>9244276             |
| /lnsig2v<br>/lnsig2u                               |                                   | 1.070798<br>.3383078                         | -5.40<br>-8.38         | 0.000                   | -7.885733<br>-3.496444                       | -3.688281<br>-2.170302                      |
| sigma_v<br>sigma_u<br>sigma2<br>lambda             | .2425162<br>.0618813              | .0296514<br>.0410226<br>.0178369<br>.0648843 |                        |                         | .0193925<br>.1740832<br>.0269216<br>4.251813 | .1581612<br>.3378507<br>.096841<br>4.506155 |

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 7.71 Prob>=chibar2 = 0.003

## A2.4.2Cobb–Douglas cost functions, using the alternative switch minutes figures

| SFA model, exp<br>stoc. frontier<br>og likelihood                                                                         | normal/expor                                                                                                       | nential mode                                                                                                  |                                                                    | Wald                                                                     | r of obs =<br>chi2(2) =<br>> chi2 =                                                                             | 52<br>3335.29<br>0.0000                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| lcostalt                                                                                                                  | Coef.                                                                                                              | Std. Err.                                                                                                     | Z                                                                  | P> z                                                                     | [95% Conf.                                                                                                      | Interval]                                                                                        |
| lswminalt  <br>llines  <br>_cons                                                                                          | .3985361<br>.5082579<br>-1.18379                                                                                   | .0702337<br>.0723406<br>.3060916                                                                              | 5.67<br>7.03<br>-3.87                                              | 0.000<br>0.000<br>0.000                                                  | .2608806<br>.3664729<br>-1.783719                                                                               | .5361916<br>.650043<br>5838614                                                                   |
| /lnsig2v  <br>/lnsig2u                                                                                                    | -4.905013<br>-3.826762                                                                                             | .4763964<br>.449463                                                                                           | -10.30<br>-8.51                                                    | 0.000<br>0.000                                                           | -5.838733<br>-4.707693                                                                                          | -3.971293<br>-2.945831                                                                           |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda                                                                              |                                                                                                                    | .0205035<br>.033166<br>.0085898<br>.0468981                                                                   |                                                                    |                                                                          | .0539679<br>.095003<br>.0123536<br>1.622588                                                                     | .1372918<br>.2292561<br>.0460251<br>1.806426                                                     |
| ikelihood-rat                                                                                                             | io test of s                                                                                                       | igma_u=0: ch                                                                                                  | ibar2(01)                                                          | = 6.44                                                                   | Prob>=chiba                                                                                                     | r2 = 0.006                                                                                       |
| ikelihood-rat<br>SFA model, trun<br>toc. frontier<br>og likelihood                                                        | ncated normal                                                                                                      | distribution (r                                                                                               | nodel D2.                                                          | <b>t)</b><br>Numbe<br>Wald                                               | Prob>=chiba<br>r of obs =<br>chi2(2) =<br>> chi2 =                                                              | r2 = 0.006<br>52<br>3152.90<br>0.0000                                                            |
| SFA model, trui<br>toc. frontier                                                                                          | ncated normal                                                                                                      | distribution (r                                                                                               | nodel D2.                                                          | <b>t)</b><br>Numbe<br>Wald                                               | r of obs =<br>chi2(2) =                                                                                         | 52<br>3152.90<br>0.0000                                                                          |
| SFA model, trur<br>toc. frontier                                                                                          | ncated normal<br>normal/trund<br>l = 23.542573                                                                     | distribution (r<br>cated-normal                                                                               | nodel D2.<br>model                                                 | <b>t)</b><br>Numbe<br>Wald<br>Prob                                       | r of obs =<br>chi2(2) =<br>> chi2 =                                                                             | 52<br>3152.90<br>0.0000                                                                          |
| SFA model, trun<br>toc. frontier<br>og likelihood<br>lcostalt  <br>lswminalt  <br>llines                                  | coef.<br>.4070946<br>.5010691<br>-1.250336                                                                         | distribution (r<br>cated-normal<br>3<br>Std. Err.<br>.0714431<br>.0740812                                     | nodel D2.<br>model<br>z<br>5.70<br>6.76                            | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.000                   | r of obs =<br>chi2(2) =<br>> chi2 =<br>[95% Conf.<br>.2670688<br>.3558726                                       | 52<br>3152.90<br>0.0000<br>Interval]<br>.5471205<br>.6462657                                     |
| SFA model, trun<br>toc. frontier<br>log likelihood<br>lcostalt  <br>lswminalt  <br>llines  <br><br><br>/mu  <br>/lnsigma2 | <pre>ncated normal normal/trun a = 23.542573 Coef4070946 .5010691 -1.2503363593366 -2.151496 2.887584 .11631</pre> | distribution (r<br>cated-normal<br>3<br>Std. Err.<br>.0714431<br>.0740812<br>.3136555<br>.4182634<br>.4758992 | model D2.<br>model<br>z<br>5.70<br>6.76<br>-3.99<br>-0.86<br>-4.52 | t)<br>Numbe<br>Wald<br>Prob<br>P> z <br>0.000<br>0.000<br>0.000<br>0.000 | r of obs =<br>chi2(2) =<br>> chi2 =<br>[95% Conf.<br>.2670688<br>.3558726<br>-1.86509<br>-1.179118<br>-3.084242 | 52<br>3152.90<br>0.0000<br>Interval]<br>.5471205<br>.6462657<br>6355831<br>.4604445<br>-1.218751 |

| SFA model, had<br>Stoc. fronties<br>Log likelihood                                                                                            | r normal/half-                                                                                                                                                         | -normal model                                                         |                                             | Wald                                                               | r of obs =<br>chi2(2) =<br>> chi2 =                                                              | 52<br>2953.62<br>0.0000                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| lcostalt                                                                                                                                      | Coef.                                                                                                                                                                  | Std. Err.                                                             | Z                                           | P> z                                                               | [95% Conf.                                                                                       | Interval]                                                                                |
| lswminalt<br>llines<br>_cons                                                                                                                  | .4925744                                                                                                                                                               | .0714449<br>.0753153<br>.3084167                                      | 5.83<br>6.54<br>-4.25                       | 0.000<br>0.000<br>0.000                                            | .276189<br>.3449592<br>-1.91556                                                                  | .5562479<br>.6401897<br>7065891                                                          |
| /lnsig2v<br>/lnsig2u                                                                                                                          |                                                                                                                                                                        | .7716131<br>.3360808                                                  | -6.95<br>-8.36                              | 0.000                                                              | -6.871397<br>-3.468792                                                                           | -3.846729<br>-2.151379                                                                   |
| sigma_v<br>sigma_u<br>sigma2<br>lambda                                                                                                        | .2453565<br>.0649052                                                                                                                                                   | .0264645<br>.0412298<br>.018212<br>.0612339                           |                                             |                                                                    | .0322029<br>.1765068<br>.0292102<br>3.456855                                                     | .1461145<br>.3410625<br>.1006001<br>3.696888                                             |
| Likelihood-rat                                                                                                                                | tio test of s                                                                                                                                                          | igma_u=0: chi                                                         | ibar2(01)                                   | = 6.58                                                             | Prob>=chiba                                                                                      | r2 = 0.005                                                                               |
| A2.4.3Translog<br>SFA model, exp<br>Stoc. frontier<br>Log likelihood                                                                          | g cost function<br>conential distril                                                                                                                                   | <b>Dution (model</b><br>nential model                                 |                                             | Wald                                                               | r of obs =<br>chi2(5) =<br>> chi2 =                                                              | 49<br>6322.74<br>0.0000                                                                  |
| A2.4.3Translog<br>SFA model, exp<br>Stoc. frontier                                                                                            | <b>g cost function</b><br><b>conential distril</b><br>conormal/expor<br>d = 35.555444                                                                                  | <b>Dution (model</b><br>nential model                                 |                                             | Wald                                                               | chi2(5) =<br>> chi2 =                                                                            | 6322.74                                                                                  |
| A2.4.3Translog<br>SFA model, exp<br>Stoc. frontier<br>Log likelihood                                                                          | g cost function<br>conential distril<br>conormal/expor<br>d = 35.555444<br>Coef.<br>2.412805<br>-3.337004<br>.9430424<br>.9657351<br>8968923                           | Dution (model<br>nential model<br>4                                   | L ´                                         | Wald<br>Prob                                                       | chi2(5) =<br>> chi2 =                                                                            | 6322.74<br>0.0000                                                                        |
| A2.4.3Translog<br>SFA model, exp<br>Stoc. frontien<br>Log likelihood<br>lcostalt<br>llines<br>lswminor<br>lline2<br>lswminor2<br>lline_swmi~r | g cost function<br>conential distril<br>conormal/export<br>d = 35.555444<br>Coef.<br>2.412805<br>-3.337004<br>.9430424<br>.9657351<br>8968923<br>17.09006<br>-4.934722 | Std. Err.<br>1.113637<br>1.231497<br>.4148564<br>.3636123<br>.3805819 | z<br>2.17<br>-2.71<br>2.27<br>2.66<br>-2.36 | Wald<br>Prob<br>P> z <br>0.030<br>0.007<br>0.023<br>0.008<br>0.018 | chi2(5) =<br>> chi2 =<br>[95% Conf.<br>.230116<br>-5.750694<br>.1299388<br>.2530682<br>-1.642819 | 6322.74<br>0.0000<br>Interval]<br>4.595494<br>9233145<br>1.756146<br>1.678402<br>1509654 |

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 0.77 Prob>=chibar2 = 0.190

SFA model, truncated normal distribution (model D3.t)

Not applicable.

## SFA model, half normal distribution (model D3.h)

| Stoc. frontier                                                                            | normal/half-                                                                     | -normal mod                                                                     | ,                                                                   | Wald o                                                      | r of obs =<br>chi2(5) =<br>> chi2 =                                               | 52<br>1.350e+10<br>0.0000                                                       |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| lcostalt                                                                                  | Coef.                                                                            | Std. Err.                                                                       | Z                                                                   | P> z                                                        | [95% Conf.                                                                        | Interval]                                                                       |
| llines  <br>lswminor  <br>lline2  <br>lswminor2  <br>lline_swmi~r  <br>cons  <br>/lnsig2v | 2.347447<br>-2.291845<br>.8155887<br>.816325<br>7885745<br>8.504816<br>-31.33877 | .0047242<br>.0046989<br>.0012298<br>.0009475<br>.001031<br>.0062143<br>74.07147 | 496.90<br>-487.74<br>663.19<br>861.55<br>-764.90<br>1368.60<br>0.42 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.672 | 2.338188<br>-2.301055<br>.8131784<br>.8144679<br>7905951<br>8.492636<br>-176.5162 | 2.356706<br>-2.282635<br>.817999<br>.8181821<br>7865539<br>8.516995<br>113.8387 |
| /lnsig2u  <br>+<br>sigma_v  <br>sigma_u  <br>sigma2  <br>lambda  <br>                     | .0494766<br>1420125                                                              | .196118<br>5.80e-06<br>.0218116<br>.0097033<br>.0218116                         | -15.33                                                              | 0.000                                                       | -3.390639<br>4.68e-39<br>.1835406<br>.0304586<br>1420125                          | -2.62187<br>5.25e+24<br>.2695678<br>.0684947<br>1420125                         |

#### A2.4.4Translog cost functions, using the alternative switch minutes figures

| Stoc. frontier                                               | -                                            |                                                          |                                        | Wald                             | er of obs =<br>chi2(3) =<br>> chi2 =                       | 52<br>7793.80<br>0.0000                                 |
|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| lcostalt                                                     | Coef.                                        | Std. Err.                                                | z                                      | P> z                             | [95% Conf                                                  | . Interval]                                             |
| llines  <br>lswminalt  <br>lswminalt2  <br>cons  <br>tnsig2v | 7093561<br>.066686                           | .0598254<br>.2317244<br>.0134431<br>2.034428<br>.6157114 | 7.60<br>-3.06<br>4.96<br>4.28<br>-8.84 | 0.000<br>0.002<br>0.000<br>0.000 | .3376516<br>-1.163528<br>.0403379<br>4.720626<br>-6.650039 | .5721626<br>2551846<br>.093034<br>12.69544<br>-4.236495 |
| /lnsig2u                                                     | -4.069206                                    | .4749054                                                 | -8.57                                  | 0.000                            | -5.000004                                                  | -3.138409                                               |
| sigma_v  <br>sigma_u  <br>sigma2  <br>lambda                 | .0657672<br>.1307324<br>.0214163<br>1.987804 | .0202468<br>.0310427<br>.0068232<br>.0462781             |                                        |                                  | .0359718<br>.0820848<br>.0080431<br>1.8971                 | .1202422<br>.2082108<br>.0347895<br>2.078507            |

#### SFA model, exponential distribution (model D4.e)

| Log likelihood                                                  | r normal/truno                                                                     |                                                                    |                               | ,<br>Numbe<br>Wald                               | r of obs =<br>chi2(3) =<br>> chi2 =                                    | 52<br>17059.74<br>0.0000                                           |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|
| lcostalt                                                        | Coef.                                                                              | Std. Err.                                                          | Z                             | P> z                                             | [95% Conf.                                                             | Interval]                                                          |
| llines<br>lswminalt<br>lswminalt2<br>cons                       |                                                                                    | .0494902<br>.1412102<br>.0088419<br>1.356359                       | 8.72<br>-4.59<br>7.31<br>6.08 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000        | .334324<br>9250483<br>.047296<br>5.584895                              | .5283221<br>3715146<br>.0819558<br>10.90172                        |
| /mu<br>/lnsigma2<br>/ilgtgamma                                  |                                                                                    | .1718865<br>.6029088<br>1.234204                                   | 0.16<br>-4.96<br>3.79         | 0.873<br>0.000<br>0.000                          | 3093317<br>-4.170871<br>2.262884                                       | .3644511<br>-1.807513<br>7.100873                                  |
| sigma2<br>gamma<br>sigma_u2<br>sigma_v2                         | .9908234                                                                           | .0303432<br>.0112219<br>.030198<br>.0005702                        |                               |                                                  | .0154388<br>.9057561<br>0093207<br>0006557                             | .1640617<br>.9991763<br>.1090532<br>.0015794                       |
| HO: No ineffic                                                  | ciency compone                                                                     | ent:                                                               | z =                           | 2.597                                            | Prob>                                                                  | z = z = 0.005                                                      |
| SFA model, ha                                                   |                                                                                    | oution (mode                                                       | D4.h)                         |                                                  |                                                                        |                                                                    |
| Log likelihood                                                  | r normal/half<br>d = 34.13733'                                                     | -normal mode                                                       |                               | Wald                                             | r of obs =<br>chi2(3) =<br>> chi2 =                                    | 52<br>17558.83<br>0.0000                                           |
|                                                                 | d = 34.13733'                                                                      | -normal mode                                                       |                               | Wald                                             | chi2(3) =<br>> chi2 =                                                  | 17558.83                                                           |
| Log likelihood                                                  | d = 34.13733<br>Coef.<br>.4318395<br>.6452302<br>.0644173                          | -normal mode<br>7                                                  |                               | Wald<br>Prob                                     | chi2(3) =<br>> chi2 =                                                  | 17558.83<br>0.0000                                                 |
| Log likelihood<br>lcostalt<br>llines<br>lswminalt<br>lswminalt2 | d = 34.13733<br>Coef.<br>.4318395<br>.6452302<br>.0644173<br>8.216281<br>.7.611943 | -normal mode<br>7<br>Std. Err.<br>.0483954<br>.1384497<br>.0086096 | z<br>8.92<br>-4.66<br>7.48    | Wald<br>Prob<br>P> z <br>0.000<br>0.000<br>0.000 | chi2(3) =<br>> chi2 =<br>[95% Conf.<br>.3369863<br>9165867<br>.0475428 | 17558.83<br>0.0000<br>Interval]<br>.5266928<br>3738737<br>.0812918 |

Likelihood-ratio test of sigma\_u=0: chibar2(01) = 11.73 Prob>=chibar2 = 0.000

APPENDIX 3: Pricing of Unbundled Access: Report by COVEC, December 2003

(COVEC limited 112 bush rd po box 300107 albany auckland new zealand t+64 9 916 1970 f+64 9 916 1971 www.covec.co.nz

# **Pricing of Unbundled Access**

for

# **New Zealand Commerce Commission**

**19 December 2003** 

This report sets out pricing principles for unbundled access and provides benchmark prices for a cost-benefit analysis of the Commission's scenarios for unbundling.

# (covec)

# Contents

| Execut | tive Summary                                  | 1 |
|--------|-----------------------------------------------|---|
| 1. T   | ne Legal and Economic Context                 |   |
| 2. H   | ow Unbundling May Promote LTBE                | 4 |
| 3. So  | enarios for Unbundling                        | 5 |
| 4. Is  | sues                                          | 6 |
| 4.1.   | Structure of Prices for Unbundled Services    | 6 |
| 4.2.   | De-averaging                                  |   |
| 4.3.   | Recommendations                               |   |
| 5. Pr  | actical Issues                                |   |
| 5.1.   | Initial versus Final Price Determinations     |   |
| 5.2.   | Setting Initial Prices                        |   |
| 5.3.   | Setting Final Prices                          |   |
| 5.4.   | Recommendations                               |   |
| 5.5.   | International final pricing principles        |   |
| 6. Ir  | itial Prices                                  |   |
| 6.1.   | Unbundled Local Loop Prices                   |   |
| 6.2.   | Access to Bitstream xDSL Service (Scenario B) |   |
| 6.3.   | Partial Private Circuits (Fixed PDN) Prices   |   |
| 6.4.   | Summary of Initial Prices                     |   |
| Refere | nces                                          |   |
| Apper  | ndix 1: Supplementary Charges                 |   |
| Apper  | ndix 2: Source Data                           |   |
| Apper  | ndix 3: Exchange Rates                        |   |
| Apper  | ndix 4: Operational Support Systems           |   |

# List of Tables

| Table 1 Recommended Initial Pricing Principles for Unbundled Services.         13                |
|--------------------------------------------------------------------------------------------------|
| Table 3 Advantages and Disadvantages of Top-down and Bottom-up Models.       17                  |
| Table 5 Advantages and Disadvantages of Historic and Forward-looking Costs                       |
| Table 7 Advantages and Disadvantages of FDC and LRAIC                                            |
| Table 9 International approaches to determining final ULL prices                                 |
| Table 11 Unbundled Local Loop Benchmarking (all prices in NZ\$ excluding GST).       25          |
| Table 17 Retail Commercial ADSL Prices (excluding GST) as at December 2003                       |
| Table 21 2Mbit/s Partial Private Circuit Prices in the EU (all prices in NZ\$, excluding GST) 29 |
| Table 23 34Mbit/s Partial Private Circuit Prices in the EU (all prices in NZ\$, excluding GST)29 |
| Table 25 Initial Prices for the Cost-Benefit Analysis (all prices in New Zealand dollars,        |
| excluding GST)                                                                                   |
| Table 27 Supplementary Charges for Unbundled Services in EU countries (all prices in Euros,      |
| excluding VAT)                                                                                   |

# **Executive Summary**

Covec was asked by the Commerce Commission to report on several pricerelated issues for input into its assessment under section 64 and Schedule 3 of the Telecommunications Act (2001) ('the Act') of the merits of specifying or designating access to unbundled elements of the local loop network and the fixed public data network. There were two specific components to the request.

First, a set of prices was required to feed into the formal cost-benefit model being assembled and interpreted by OXERA. Secondly, we were asked to consider the options for defining initial and final pricing principles (which need to be stated for designated services) and to recommend a preferred approach in each case.

In addressing this mandate, we have been guided by the purpose statement contained in section 18 of the Act. This report begins with an analysis of the implications of the purpose statement for our work. We identify the price of access to unbundled elements as an important determinant of the costs and benefits of designation and discuss the channels through which the access price affects the long term benefit of end users.

We then discuss a set of relevant conceptual issues. These include the structure of pricing and the extent of geographical de-averaging. Regarding structure, there is a distinction required between the initial prices presented here for the cost benefit analysis and the prices that might ultimately be set by the Commission in the context of a determination. Discussions with OXERA and the Commerce Commission indicated that the cost benefit model being used to assess the merits of designation incorporates a two-part tariff for access to unbundled elements. This contrasts with the practice of telecommunications regulators, who have typically found the need for multiple tariff components. This is not to suggest that OXERA's two-part tariff approach is inappropriate for the purpose to which it is being put, namely a cost-benefit analysis of a proposed regulation. On the contrary, considerable simplification is necessarily part of such an analysis, and a simplification of the tariff structure is no more objectionable than many other assumptions that are required.

The main implications of our conceptual analysis are for the pricing principles. We recommend that in the event that unbundling is designated, and where determinations are required, separate tariffs should be struck for connection, monthly fees, co-location of different types, and backhaul. We note that charges for operational support services (OSS), while conceivably amenable to separation, can validly be included in the connection and monthly fees. We also find that a limited form of geographical de-averaging is efficient.

We then discuss some practical matters for the setting of prices and the design of pricing principles. In combination with the evidence and the conceptual analysis, these lead us to the view that initial pricing principles should vary with the type of unbundled access. We favour benchmarking for unbundled access to full and shared local loops and access to the unbundled elements of the fixed public data network. For xDSL bitstream access we recommend either a modified retail minus approach or a hybrid method based on linesharing prices. We consider that bottom-up costing is an appropriate final pricing principle for all services except xDSL bitstream access. For the latter we recommend retail minus as the final pricing principle.

The final section of the report draws on publicly available data to derive service prices for use in the cost-benefit analysis. In the case of access to unbundled local loops and the unbundled elements of the fixed public data network, our benchmarking directly results in an estimate for each price. For xDSL bitstream access we have not provided monthly charges but have instead discussed both possible pricing methods.

The first version of this paper was produced in September. Subsequently, a number of written submissions were received on the wider issue to which this work relates, and were also made presentations at the Commission's conference. All of the direct criticisms of our first report have been reviewed, and we have made a number of changes to the original draft. The most substantive changes are to the quantitative part of the report. A revised exchange rate methodology has been adopted, and recently released data have been incorporated into our analysis wherever possible.

# 1. The Legal and Economic Context

This report contains key inputs into a study that, one way or another, will have a material impact on the development of the telecommunications industry in New Zealand. It is therefore necessary to ensure that the analysis is conducted in full view of the relevant legal and economic context. In this section we discuss the purpose statement contained in the Act, and the implications of this for the designation of unbundled access.<sup>1</sup>

Part 2 of the Act concerns designated services. Its purpose is described in section 18(1) as being

"...to promote competition in telecommunications markets for the long-term benefit of end-users of telecommunications services within New Zealand by regulating, and providing for the regulation of, the supply of certain telecommunications services between service providers."

Further, in section 18(2), the "efficiencies" associated with particular outcomes are identified as a necessary criterion against which this purpose should be assessed.

The Commission was required to conduct an investigation into the net benefits of providing access to unbundled elements and to report on this by December 2003.

Since the Act was passed, considerable additional experience with unbundling has been obtained in many countries. While the views of advocates on both sides of the current New Zealand debate may not have changed significantly, the Commission is now in a much better position to evaluate the relative merits of unbundling than was the case two years ago.

<sup>&</sup>lt;sup>1</sup> Specification does not concern us here because this status does not allow the Commission to rule on the pricing matters with which we are concerned.

# 2. How Unbundling May Promote LTBE

This report is part of a larger project designed to determine whether specification or designation of unbundled access will promote the long term benefits of end-users of telecommunications services in New Zealand. It is therefore relevant at the outset to consider, at least briefly, how this might occur.

Fundamentally, the source of a net benefit must be either sustainably lower prices for existing services, or the more rapid deployment of new services, or both. We consider each of these possibilities in turn.

Sustainably lower prices for existing services will be delivered by unbundling if and to the extent that: (a) the existing services are priced in excess of their cost; and (b) unbundling allows access to inputs at a lower cost than would otherwise be available, (c) and the administrative costs associated with unbundling are not too high. If any of these three conditions fails, unbundling may not fully promote the objectives of the Act in respect of existing services.

While there would seem to be several channels through which unbundling might deliver benefits to end users, the final welfare effect of such a step will clearly depend in part on the prices at which access is provided. The motivation for this project is therefore to estimate those prices. Our estimates are then used in the broader cost benefit analysis.

# 3. Scenarios for Unbundling

Following are definitions of the four scenarios for which we were requested to determine initial and final pricing principles and also initial prices for the costbenefit analysis.

Scenario A: Physical access to copper loops at the MDF.

*Scenario B:* Access to a bitstream xDSL service at (a) Telecom's ATM switch (parent switch), and (b) the access seeker's Point of Interconnection with Telecom's ATM network.

*Scenario* C: Access to 2Mbit/s data tails at the Digital Distribution Frame (a partial private circuits service)

*Scenario D*: Access to data tails at the Digital Distribution Frame at speeds in excess of 2Mbit/s (a partial private circuits service)

Throughout the remainder of this paper we shall refer to these as scenarios A, B, C and D.

# 4. Issues

In this section we discuss conceptual issues with regard to setting prices for unbundled local loop and fixed public data network (fixed PDN) services. The conceptual issues discussed here are general issues related to unbundling and for the most part we do not distinguish between the Commission's unbundling scenarios. Where issues only apply to a subset of these scenarios, this will be specifically noted.

### 4.1. Structure of Prices for Unbundled Services

Unlike setting the correct *levels* for the local loop prices and determining the likelihood of facilities-based entry, the appropriate *structure* of access prices for unbundled services is relatively easy to determine. In particular, the access prices charged to entrants should take the form of a multi-part tariff, so that prices reflect as closely as possible the actual costs incurred in providing such services.

In general, basic unbundled services should be priced using a two-part tariff such as a connection fee and a periodic (probably monthly) rental charge. This reflects the fact that there are one-off costs associated with switching existing lines from the incumbent's network to the entrant's network or with connecting new lines, and that there are ongoing direct and indirect costs associated with operating these lines.

Depending on the nature of the service-based entry undertaken by an entrant, costs additional to those discussed above will be incurred by the incumbent. These costs will be passed on to the entrants most usually in the form of cost-based prices. To the extent that these costs are distinct and separable from those already mentioned, and to the degree that each cost differs according to the new entrant's mode of entry, economic efficiency requires that these be priced separately. The two main types of cost that fall into this category are those that arise from backhaul and co-location. We now briefly discuss the issues arising from these types of cost.

#### 4.1.1. Backhaul

The need for backhaul will differ between each of the Commission's scenarios. For example, in scenario B, it will differ if the access seeker chooses to interconnect at their point of interconnection with Telecom's ATM network, rather than at the closest feasible point to the customer. As under scenario A, in this latter case, Telecom may incur costs of carrying the traffic over its network from the end of the local loop or data tail to the point of interconnection with the access seeker's network depending on who is responsible for backhaul.

Since the costs associated with backhaul are not always incurred (depending on the entrant's choice of mode of entry), and are clearly separate from the costs of operating the local loop or data tail, they should be priced separately. Appropriate cost-based prices for backhaul will ensure efficient use of this option by entrants.

#### 4.1.2. Co-location

The second type of cost that should be priced separately are those costs associated with co-location. Co-location costs are incurred by the incumbent and entrant when the entrant installs equipment at the incumbent's facilities and premises and these costs borne by the incumbent should be passed on to the entrant in the form of cost-based prices. Co-location costs will be incurred by Telecom if the entrant chooses scenario A and to a lesser extent under scenarios B, C and D.

Pricing for co-location is further complicated by the fact that in practice there are different ways that it can be implemented. In general there are three different ways that co-location can be achieved:

- 1. *Hosted* or *hostel* co-location: The equipment of access seekers is housed in separate rooms or areas at the incumbent's facilities.
- 2. *Co-mingling*: The equipment of access seekers is housed at the incumbent's facilities but is mixed in with the incumbent's equipment, not in a separate room or area.
- 3. *Distant* co-location: The equipment of access seekers is housed at a distant location and an external tie-cable is used to connect the incumbent's exchange with this remote site.

To promote the efficient use of each of these three types of co-location, each should be priced separately.

#### 4.1.3. Operational Support Systems

Costs in this category are those associated with systems such as handling provisioning, pre-ordering, and fault testing. For example, Telecom may have to modify its operational support systems to incorporate handling of orders and faults related to unbundled local loops.

In an earlier draft of this paper we recommended that operational support services (OSS) charges also be levied separately. However, since these costs will likely be incurred under each mode of entry (and therefore cannot be influenced by the new entrant's decision process), the fixed OSS charges can naturally be grouped into the connection fee and recurring OSS charges can be grouped into monthly rental fees.

Indeed, OSS charges appear to have been grouped into connection and monthly rental charges in many of the countries used for establishing benchmark prices. However, because of translation difficulties or insufficient transparency of reporting, it has been difficult to assess the actual extent to which this has been done.<sup>2</sup> We therefore suggest that some sensitivity testing is performed around the connection and monthly rentals to mimic a range of OSS charges in New Zealand. We also recommend that the composition of the connection and monthly rentals is made available to prospective new entrants in order to maintain tariff transparency and minimise debate over the exact scope and nature of charges.

Our attempts to identify the nature and extent of OSS charges incorporated in connection and monthly rentals in benchmark countries are documented in Appendix 4.

#### 4.2. De-averaging

De-averaging refers to the practice of setting different prices for unbundled services in different geographical locations. This allows the prices to better reflect the costs of serving different types of customer, and sends more appropriate signals than a uniform price. We are in favour of de-averaging as it is more likely to promote economic efficiency. The basic arguments have been laid out by the ACCC,<sup>3</sup> and Belfin *et al* (1999), and are as follows.

First, de-averaged prices are less likely to impose distortions on the investment decisions of Telecom or potential entrants. A uniform price will necessarily be above the cost of serving customers in low-cost areas such as CBDs and below the cost of serving customers in high-cost areas such as rural locations. A uniform price will therefore encourage facilities-based entry by entrants who are less efficient than Telecom in low-cost areas, possibly

<sup>&</sup>lt;sup>2</sup> Australia is the only country for which we know the actual amount of OSS charge included in the monthly rental.

<sup>&</sup>lt;sup>3</sup> Pricing of Unconditioned Local Loop Services (ULLS), ACCC Final Report, March 2002.

resulting in greater duplication of the local loop in these areas. Entrants will also use Telecom's infrastructure to a greater extent than is efficient in highcost areas.

Second, uniform prices are likely to result in a greater degree of 'creamskimming' by entrants than are de-averaged prices. Cream-skimming occurs when entrants confine their entry to high-value areas such as central business districts. Note, however, that cream-skimming is only undesirable to the extent that it is undertaken by inefficient entrants. For example, if high-cost entrants are induced to duplicate existing networks in high-value areas where the uniform price is too high, cream-skimming is inefficient. If entrants have lower costs, then cream-skimming is efficient.

In particular, a uniform price is more likely to promote inefficient facilitiesbased entry in high-value areas causing Telecom to lose more line revenue in these areas. Furthermore, in low-value areas where the uniform price is below the cost of providing access, Telecom will be unable to recover the cost of serving these customers.<sup>4</sup> Short of setting an individual access price for each local loop or data tail, cream-skimming cannot be prevented entirely. Nevertheless, some de-averaging will go some way towards reducing this problem.

Finally, it is likely that some technologies for providing access may be more appropriate in some areas. For example, wireless or satellite services may be the most appropriate technology for remote rural areas, while the copper network may be most appropriate in CBDs. Prices for unbundled services that at least to some extent reflect the cost of operating the existing network in these different areas will send better signals to guide investment in alternative technologies in different areas.

The main disadvantage of using de-averaging is that it requires setting more prices and thus is more time-consuming and expensive to implement. This cost must be compared to the benefits that flow from sending clearer investment signals, as described above. In New Zealand, as in Australia, the

<sup>&</sup>lt;sup>4</sup> A further complicating factor when implementing de-averaging is its implications for the Telecommunications Service Obligation (TSO). Of the four options presented by the Commission, the TSO is only applicable to scenario A since this is the only scenario that is likely to involve voice services. Nevertheless, some research beyond the scope of the present study may have to be undertaken to determine the implications that unbundling has for the TSO.

costs of providing service in urban and rural areas are likely to be different. However, the costs and difficulties involved with setting a large number of geographically determined prices means that a relatively small number of price categories should be used.

The ACCC's approach of using four separate bands is a pragmatic way of addressing the problem of de-averaging without creating excessive regulatory overhead. These four bands are defined as:<sup>5</sup>

- 1. CBD areas (Sydney, Melbourne, Brisbane, Adelaide, Perth).
- 2. Urban areas of capital cities, metropolitan regions, and large provincial centres.
- 3. Semi-urban areas including outer metropolitan and smaller provincial towns.
- 4. Rural and remote areas.

A similar mapping could be applied to New Zealand, although the actual number of bands may differ. Some analysis beyond the scope of the present study would have to be undertaken to determine the appropriate number of bands and the exact band definitions.

In summary, we recommend that some form of de-averaging be implemented for the reasons outlined above. However, for pragmatic reasons de-averaging has not been applied to the initial prices developed in this report. In particular, the analysis required to identify appropriate bands has not been undertaken at this time.

#### 4.3. Recommendations

The conceptual issues discussed in this section lead us to make the following recommendations with regards to prices for unbundled services:

- The prices for unbundled services should reflect, as closely as possible, the costs associated with these services. To the extent that costs can be separated into components that affect decisions of access seekers (e.g. whether to use backhaul or the form of co-location), separate prices should be charged for these components.
- Some form of geographic de-averaging should be implemented.

<sup>&</sup>lt;sup>5</sup> See *Pricing of Unconditioned Local Loop Services (ULLS)*, ACCC Final Report, March 2002.

# 5. Practical Issues

This section outlines practical issues surrounding pricing principles for designated services.

### 5.1. Initial versus Final Price Determinations

If private commercial negotiations between the incumbent and unbundled services access seeker fail, the parties may apply to the commission for a determination under the scenario where services are designated. In such instance, the Commission intervenes and sets prices for designated services on their behalf. In most jurisdictions, these prices are determined by a cost-based pricing model, of a similar form to those used for interconnection pricing. However, considerable time is required to fully calibrate and populate such models. Recognising this general point, the Act envisages that the Commission may wish to stimulate competition more expeditiously, setting short-term prices in an initial pricing determination. These initial prices bind market participants until final prices become available or until the parties reach mutual agreement through renegotiation.<sup>6</sup>

The remainder of this section outlines practical issues associated with determining initial and final prices for unbundled services.

### 5.2. Setting Initial Prices

The short timeframes associated with initial price determinations significantly narrows the range of pricing principles on which they can be based. An attractive approach to selecting a reasonable price in a short timeframe is to use international benchmarks. This involves setting the initial price on the basis of average prices in other jurisdictions.

The benchmarking approach has many obvious advantages. First, relative to a bottom-up cost-based approach, it is quick and simple to implement. Second, it is highly transparent. Third, it ensures that regulatory decisions are not at odds with those made by international counterparts. However, this approach also has its shortcomings.

<sup>&</sup>lt;sup>6</sup> To the extent that initial and final pricing principles differ, so too could the prices set by the Commission in their initial and final determinations. To this end, the Commission may wish to consider how the two sets of prices should be reconciled.

First, benchmarking generally fails to account for differences in the operating environments faced by international and domestic market participants. This point was discussed in detail by Sidak and Singer (2002), who considered an extension to standard benchmarking analysis. The authors show how econometric modelling can be used to reflect the effect of variables that may influence unbundled services costs. These variables could include factors such as population density, wage rates, the degree of urbanisation, line density and so on.<sup>7</sup>

Second, naïve averages, as commonly used in standard benchmarking, can provide inaccurate in- and out-of sample predictions when they are small in relation to their sample variances. In other words, setting domestic initial prices on highly-variable international prices is dubious when confidence intervals on the sample mean are relatively large. This is particularly problematic if the international prices are highly skewed, with one or two outlying observations having a marked influence on the benchmark average. In this instance, sample medians provide more robust estimates.

When implementing benchmarking, it is important to realise that the benchmark prices can be sensitive to the countries that are included in the sample. Inter-country differences in prices can be due to many factors, not least of which is the cost base that is used (for example, forward-looking or historic costs). This raises the issue of whether benchmarks should be based only on countries that adopt pricing principles similar to those that will be used in New Zealand. On the one hand, this may provide more accurate

<sup>&</sup>lt;sup>7</sup> We note that CRA have vigorously criticised our first report for not including econometric benchmarking. An early draft of our first report did in fact incorporate such an econometric approach for scenario A, and we have also looked into the feasibility of this approach with the revised data used in this report. However, we have used standard benchmarking for determining the initial prices in both versions of our report (a) partly at the Commission's request and (b) partly as our analysis indicated that the prices generated by an econometric approach would not be significantly different than those generated by standard benchmarking. Indeed, our investigations with econometric benchmarking showed that the resulting New Zealand prices varied with the model specification, as one would expect. Moreover, for the preferred models, namely those resulting from a general to specific specification process using the most recent data, the 90% confidence intervals around the benchmark price contained the median prices reported below and obtained through standard benchmarking. Our analysis therefore produced no evidence to suggest that the prices reported here are significantly different from those that would be generated through econometric benchmarking.

benchmarks, but on the other hand it greatly reduces the available sample size. Since the available sample size is already fairly small, we have decided not to exclude countries that use historic or current cost bases.

In addition to the aforementioned potential weaknesses of the benchmarking approach, there are also cases where benchmarking is simply inappropriate or unfeasible. This may be due to lack of suitable data or some other compelling reason that precludes its use. An alternative that could be attractive in some circumstances is the 'retail minus' approach. This involves taking the retail price of a service and subtracting some percentage to derive the wholesale price. This does not completely avoid the issues associated with benchmarking, though it does considerably reduce their complexity. For example, exchange rates are largely irrelevant to the size of the appropriate discount.

The discount should be large enough to support an efficient supplier of the resale service. There is no need to provide a larger discount, and in any event, the final access price (retail minus discount) should not be less than the efficient cost of wholesale supply. Within these bounds however, there are divergent views among regulators about the appropriate amount to be subtracted. Some adopt a discount that reflects an estimate of the average mark-up across several of the incumbent's services. A well known alternative (the efficient component pricing rule) sets the discount with reference to the costs saved by the incumbent in not providing the retail component of the service.

On the basis of available data and suitability of the various approaches, we recommend initial pricing principles in Table 1 be applied to the scenarios under consideration by the Commission.

| Unbundled Service         | Initial Pricing Principle |
|---------------------------|---------------------------|
| Full and Shared (A)       | Benchmarking              |
| xDSL Bitstream Access (B) | Modified Retail Minus     |

Fixed PDN Services (C & D) Benchmarking

Table 1 Recommended Initial Pricing Principles for Unbundled Services.

These recommendations are based on the following rationale. First, we consider that benchmarking is the best way to get a reasonable price in a short timeframe. While it is true that this approach is not without its problems, the Commission is experienced in dealing with those problems and can be

expected to further develop and refine its benchmarking capability in the future. Furthermore, there is a good range of available data on many of the prices required for this study, so we recommend these be used in benchmarking analyses where that is feasible.

Benchmarking is not feasible for xDSL bitstream access pricing however, because of a lack of suitable data. There are several possible reasons for the lack of data, including the fact that this service is not available in all jurisdictions that have mandated unbundling, that in some locations where it is available it has been a recent addition to the list of access types, and the diversity in definition of the xDSL bitstream service.

Another possibility would be to base the initial prices on line-sharing benchmarks combined with an uplift factor to reflect any additional costs associated with xDSL bitstream access. The uplift costs would depend on the point at which access was obtained to the xDSL bitstream however, and these could be difficult to estimate in the time available.

Such considerations led us to examine the possibility of using retail-minus pricing for xDSL bitstream access. This is an attractive principle for a relatively modern service in which the technology is still evolving and being deployed, because it is less likely to deter investment by access providers. It also raises practical and policy difficulties however.

The practical difficulty is that there may be no retail xDSL bitstream access service. Instead, there are retail xDSL services which frequently include more than would be required by an access seeker. National and international data transport is the most obvious service that is habitually bundled with xDSL retail offers but could be readily provided by access seekers. This raises a policy problem in the sense that the primary benefits of designating an xDSL bitstream access service come from increasing competition in those components able to be supplied by other parties. If the mandated wholesale price starts from a retail price that includes the access provider's chosen structure of data charges, the competitive benefits of designation are likely to be substantially lessened.

This analysis suggests two possible ways forward, both of which retain the retail-minus principle. One option is to start from the access provider's full speed xDSL prices, and to ensure that the "minus" component includes the bulk of the data charges. Alternatively, it seems possible that the prices for speed-limited xDSL could be used as the starting point. These prices are not

differentiated by data volumes, though they almost certainly include a (flat) contribution for the average costs of data transport. An estimate of the size of that contribution should be included in the "minus" component if this approach is taken.

The xDSL prices reported in section 6.2 are based on the first of these methods and are calculated in the following way. We begin with the retail price for the full speed commercial xDSL service with the smallest bundled data transport quantity, currently called JetStream 600. An estimate of the efficient cost of the 600Mb data transport service is then subtracted, to obtain a "modified retail price" for an unbundled xDSL service. From this price, a standard 16% discount is subtracted. Further details are provided below.

#### 5.3. Setting Final Prices

The general consensus amongst international regulatory bodies is that final unbundled services prices should reflect the cost of efficient service provision. In practice, however, we lack a method of identifying the cost of producing a specific service or services. All we know is the current cost of producing the bundle of services we presently sell.

The challenge for regulators is then to construct a model that accurately identifies the costs of the service to be regulated. This, in turn, requires regulators to consider three dimensions of an incumbent's costs: the method of cost capture; the cost base; and the cost standard. While these dimensions are not mutually exclusive, considering them in isolation helps identify the advantages and disadvantages of the possible approaches.

The remainder of this section considers each of these dimensions in the New Zealand context to recommend final pricing principles for unbundled services.

#### 5.3.1. Cost capture

The first step in deriving unbundled services prices is to capture all costs borne by the incumbent in relation to the service being subjected to regulation. This can be done using either a top-down or bottom-up costing model. Topdown models use the existing network and information stored in company accounts to derive costs. Starting from a summation of all network costs, including overheads, an attempt is made to identify the costs associated with progressively more narrowly-defined services. Bottom-up models are frequently based on efficient rather than actual network design. In this case, construction involves designing a hypothetical optimized network of a prespecified capacity using current technology. The inputs required to deliver the services over this hypothetical model are then costed, and unit costs computed.

In principle, under similar assumptions the two approaches should produce identical results. In practice, however, this is seldom the case. For instance, the Austrian regulator's bottom-up model gave only 56% of the costs produced by the incumbent's top-down model (Belfin *et al*, 1999). A similar discrepancy was reported in the United Kingdom, leading OFTEL to commission a full external reconciliation of the bottom-up and top-down results (Cave, 2002).

Discrepancies between top-down and bottom-up costs usually stem from three sources: different input assumptions; different cost bases (which we discuss later); and different network technology and topology. It therefore follows that if input assumptions and cost bases are roughly equal, any discrepancy can reasonably be attributed to inefficiencies of the existing network structure. In other words, the hypothetical optimised network underlying the bottom-up approach differs from the actual network, implying that the latter is suboptimal.

Broadly speaking, because bottom-up costs are generally based on an optimised network using the latest technology, they are usually lower than top-down costs, all other things being equal. This has led many researchers to describe top-down costs as defining an upper bound and bottom-up costs as defining a lower bound. This characterisation is illustrated in Figure 1.

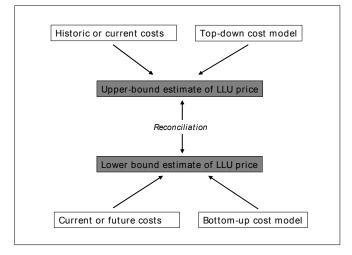



Figure 1 Reconciliation of Top-down and Bottom-up Costs.

Just as each approach is based on its own set of inputs and assumptions, each also has its own advantages and disadvantages. These are summarised in Table 2.

Based on the relative advantages and disadvantages conveyed in Table 2 and in keeping with previous decisions of the Commission, we recommend using a bottom-up model for determining the final prices of unbundled services.

| Method    | Advantages                                                                  | Disadvantages                                                                |
|-----------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|
|           | Not as dependent on<br>assumptions and external<br>information              | Prices may embody and pass<br>on incumbent inefficiencies                    |
| Top-Down  | Prices are based on actual costs, rather than estimates                     | Incumbent may manipulate cost data to increase prices                        |
|           | Information usually readily<br>accessible from incumbent<br>accounting data | Complexity of accounting<br>information can hamper<br>transparency of prices |
|           |                                                                             | No incentives for efficiency                                                 |
|           | Less dependent on<br>incumbent information                                  | Highly dependent on plausibility of assumptions                              |
| Bottom-up | Exclude possible inefficiencies from prices                                 | Scope depends on availability of external data                               |
| Bottom up | Greater transparency than top-down models                                   | Requires detailed engineering model                                          |
|           | Provide correct signals for efficient entry & investment                    |                                                                              |

Table 2 Advantages and Disadvantages of Top-down and Bottom-up Models.

#### 5.3.2. Cost Base

The next cost dimension to be considered is the cost base to which the bottomup model will be applied. There are two bases to choose from: historic costs and forward-looking costs.

As their name implies, historic costs are costs incurred in the past for existing network equipment. As such, the information will be stored in the firm's accounting data and therefore readily accessible. Forward-looking costs, or more precisely "forward-looking costs of modern equivalent assets", are quite different. These are costs that would be incurred if network equipment were bought today or in the near future. Its definition can be complicated by technological innovation, which potentially renders older equipment obsolete. In general, if modern equivalent assets are more technologically advanced than actual installed equipment and/or if asset prices have fallen over time, forward-looking costs will be lower than historic costs.

As with the various forms of cost capture, the two forms of cost base also have their own advantages and disadvantages. These are summarized in Table 3.

| Base                | Advantages                                                                | Disadvantages                                                                       |
|---------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                     | Information readily available                                             | Does not reflect cost of<br>modern efficient technology                             |
| Historic            | No assumptions required about equivalency of modern assets                | Passes on legacy of all<br>inefficient decisions and<br>investments to new entrants |
|                     |                                                                           | Does not reflect evolution of<br>asset prices                                       |
|                     |                                                                           | Sends wrong signals to market                                                       |
| Forward             | Most accurately reflects<br>costs incurred by an<br>efficient new entrant | Based on forecasts and therefore highly dependent on assumptions                    |
| Forward-<br>Looking | Eliminates inefficiency inherent in historic costs                        |                                                                                     |
|                     | Provides most accurate investment signals                                 |                                                                                     |

Table 3 Advantages and Disadvantages of Historic and Forward-looking Costs.

As noted earlier, the choice of cost base and method of cost capture are not mutually exclusive and should thus be considered jointly. In particular, topdown models are most frequently used with historic costs, while bottom-up models are generally implemented using forward-looking costs. Since we earlier recommended a bottom-up model, our choice of cost base is forwardlooking costs. This is consistent with the cost base used by the Commission in previous telecommunications determinations.

#### 5.3.3. Cost Standard

The final cost dimension that needs to be considered to establish final pricing principles is the cost standard. This refers to the scope and type of costs that feed into the costing models. As you would expect, the choice of cost standard has a significant effect on the total estimated cost of service provision and thus the regulated price of unbundled services.

Although the choice of cost standard is restricted by the choice of cost capture (as was the case with cost base), we first outline the most common forms of cost standard used internationally to regulate unbundled services prices.<sup>8</sup>

*Fully Distributed Costs (FDC)* allocates all of an organisation's costs to its services and products. Therefore, the costs of a given service are composed of direct volume-sensitive costs, direct fixed costs and a share of the joint and residual common costs. Often the proportion of joint and residual common costs is causally related, although it is sometimes allocated in an arbitrary manner. Difficulty in allocating unattributable costs is the major weakness of this cost standard – there is too much flexibility and lack of accountability in the costs derived.

*Stand-alone Costs* is a cost standard that measures the cost of providing a service in isolation from the other services of the company. It includes all costs directly attributable and all shared cost categories related to production of the service, which includes volume-sensitive, fixed, common and sunk costs. Under this allocation method, the shared costs are totally supported by the service that is to be provided in isolation.

This standard does not lead to economic efficiency if used for pricing and resource allocation decisions. Purchasers of this service bear the burden of the total costs of resource that are also used in the provision of all other services, thereby distorting price signals.

*Embedded Direct Costs (EDC)* considers only the directly attributable and indirectly attributable volume-sensitive and fixed costs. This is considered by many regulators to be too narrow a description of costs for the purpose of LLU prices.

*Marginal Costs (MC)* measure the costs of increasing the production output by one additional unit or the costs saved by reducing the production output by one unit, holding the production levels of all other services constant. This definition implies that MC include only the direct volume-sensitive costs of the given service, excluding all cost categories that do not either demonstrate a causal relationship with the unitary change in output, or do not vary with the output.

<sup>&</sup>lt;sup>8</sup> Cost standard definitions in this section were abridged from Andersen (2002).

Marginal Costs are hard to implement because costing of unitary changes in production output is rarely possible (capital and labour are difficult to divide). Furthermore, joint and common costs will not be covered if all services are priced at marginal cost.

*Long-Run Average Incremental Costs (LRAIC)* associates a long-term horizon to incremental costs. Incremental Costs measure the cost variance when increasing or decreasing the production output by a substantial and discrete increment. In the particular case where the increment considered is a single unit, incremental costs equal marginal costs. Because the increment is substantial, not only the volume sensitive and directly attributable costs are taken into account. Some capital and fixed costs are also incorporated in the cost of the service. In the long-term all costs are treated as variable as the production capacity is not a constraint any more. Therefore, long-run incremental costs include capital and the volume-sensitive costs related to substantial change in production.

Among the cost standards listed above, the two most commonly used by international regulators for unbundled services are FDC and LRAIC. Before recommending a cost standard upon which to establish final pricing principles we first briefly outline the advantages and disadvantages of these two main approaches. These are summarised in Table 4.

| Standard | Advantages                                            | Disadvantages                                                         |  |  |  |  |
|----------|-------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| FDC      | Relatively easy to develop                            | Disincentive for incumbent to be efficient                            |  |  |  |  |
|          | Based on readily available information                | Cost allocations largely<br>arbitrary when indirect costs<br>are high |  |  |  |  |
|          | Easy to audit/transparent                             | Do not provide correct signals                                        |  |  |  |  |
| LRAIC    | Generate efficient, subsidy-<br>free prices           | Very difficult to construct & require numerous inputs                 |  |  |  |  |
|          | Provide correct price signals                         | Hard to understand/audit                                              |  |  |  |  |
|          | Do not propagate legacies of an inefficient incumbent | Data not extracted from accounts, so expensive to populate            |  |  |  |  |

Table 4 Advantages and Disadvantages of FDC and LRAIC.

Given that we have already selected a bottom-up cost model based on forward-looking costs, only one of these cost standards is applicable – LRAIC. Fortunately, this is also the standard most likely to produce efficient prices. Further, since the Commission is developing a total service long run incremental cost (TSLRIC) model, which is an embodiment of the LRAIC approach, many of the difficulties in constructing and populating the model articulated above are circumvented.

In implementing the TSLRIC cost concept, the relevant increment is taken to be the entire service at issue. Restricting attention to capital costs for a moment, the cost base for TSLRIC is defined as the difference between the capital costs of building two modern networks: one of which provides the service at issue, while the other does not. To the extent that some components of the network need to be larger when the service is provided, the cost of providing that additional capacity is relevant. The cost base is then annualized (using assumptions about asset lives, depreciation rates and the rental cost of capital), and unitized (to share the annual cost over the relevant number of units of the service provided). It should be clear that this results in an averaging across all units of the service of the long-run incremental cost of providing the service.<sup>9</sup>

We note that Telecom have criticized the TSLRIC approach on the grounds that in focusing on average costs it ignores the optimal structure of prices. In our view this criticism is overstated. Consider, for example, a two-part tariff comprised of a monthly fixed fee and a variable usage charge. These are distinct services with different costs characteristics and could therefore be costed separately using the TSLRIC standard. To the extent that the problem Telecom discusses exists, it therefore concerns the implementation of TSLRIC rather than the basic principle.

In general, we consider that a bottom-up, forward-looking LRAIC concept should be used for determining final unbundled services prices unless the form of access is close to pure resale. Of the four scenarios considered here, we see xDSL bitstream access as the only sensible exception from the LRAIC concept, and recommend that this be priced using the retail-minus method. The rationale draws on our thinking in section 5.2 above.

<sup>&</sup>lt;sup>9</sup> In the USA, a similar method known as total element long run incremental cost (or TELRIC) is used, in which the costing problem starts by specifying all of the incremental elements required (and proportions of their use) to provide the service at issue, and then aggregates these up. However, we note that this approach has come under scrutiny in the USA recently.

#### 5.4. Recommendations

The practical issues discussed in this section lead us to make the following recommendations with regards to prices for unbundled services other than xDSL bitstream access:

- ✤ Method of Cost Capture: Bottom-up.
- ✤ Cost Base: Forward-looking costs.
- ✤ Cost Standard: LRAIC.
- The Commission's TSLRIC model, which is under development, could be adapted to derive final prices for unbundled services.

For xDSL bitstream access we recommend modified retail-minus, described fully in section 6.2, as the final pricing principle.

### 5.5. International final pricing principles

As a matter of comparison, we have produced Table 5 to show the final pricing principles adopted internationally for unbundled local loop (ULL) prices.

| Country         | Cost Base                             | Cost Standard                                         |  |
|-----------------|---------------------------------------|-------------------------------------------------------|--|
| Belgium         | Historic                              | Retail minus                                          |  |
| Denmark         | Forward-looking                       | LRAIC                                                 |  |
| Germany         | Forward-looking                       | LRAIC                                                 |  |
| Greece          | Current                               | LRAIC + mark-up                                       |  |
| France          | Forward-looking                       | LRIC +mark-up for<br>common costs +<br>specific costs |  |
| Ireland         | Current                               | LRIC + mark-up                                        |  |
| Italy           | Historic                              | FDC                                                   |  |
| The Netherlands | Current                               | EDC                                                   |  |
| Austria         | Current                               | LRAIC                                                 |  |
| Portugal        | Flexi                                 | ble <sup>10</sup>                                     |  |
| Finland         | Historic/Current                      | Company specific                                      |  |
| Sweden          | Historic                              | FDC                                                   |  |
| UK              | BT: Forward-<br>looking/current       | BT: LRIC + FDC                                        |  |
|                 | Kingston: Forward-<br>looking/current | Kingston: CCA* + FDC                                  |  |

Table 5 International approaches to determining final ULL prices.

*Source:* Ninth Report of the Commission of the European Communities on the Implementation of the Telecommunications Regulatory Package (Annex 2).

\* CCA = current cost accounting

<sup>10</sup> When establishing costs/prices for a new service, ANACOM identifies in the accounting system of PTC (ABC), the resources used and the activities necessary to supply the new service. The actual expenses and budget are also used to determine a cost for the local loop.

# 6. Initial Prices

In this section we develop initial (wholesale) prices for the four unbundling scenarios set out by the Commission. We separate these into prices for scenarios using the copper local loop and xDSL bitstream access, and options that are based on partial private circuits services.

For all scenarios, we estimated two-part tariffs, consisting of a one-off connection charge and a monthly rental. For scenarios A, C, and D these tariffs are based on international benchmarks and we have endeavoured to obtain the latest publicly available data. This is particularly important since prices for such services have been steadily declining. The international prices have been compiled from multiple sources and have been converted to New Zealand dollars using long-run average exchange rates provided by the Commission, as detailed in the appendix. The data reveals there is great variation in international prices for unbundled services.

Although access to unbundled network elements has been mandated in many countries, prices are not yet available for some services, for example shared access to the local loop in Australia.

### 6.1. Unbundled Local Loop Prices

In this section we develop initial prices for unbundled local loop services for the purpose of the cost-benefit analysis.

#### 6.1.1. Physical Access to Copper Loops (Scenario A)

These prices are based on the available local loop prices from a variety of countries that have mandated unbundling. These prices are shown in Table 6 (and are outlined in more detail in the Appendix). We include both full and shared access prices.

Due to the disparity in some cases between sample means and medians we adopt the sample medians as benchmark prices for the local loop unbundling scenarios. For full unbundling, this gives a monthly rental of **\$23.79** and a connection fee of **\$116.80**. For shared access, this gives a monthly rental of **\$10.03** and a connection fee of **\$174.83**.<sup>11</sup>

<sup>&</sup>lt;sup>11</sup> A comparison between countries that use historic costs versus those that use current or forward-looking costs reveals no statistically significant difference in the means.

| (an prices in NZ\$ excluding GST). |                 |            |          |            |                                   |  |  |
|------------------------------------|-----------------|------------|----------|------------|-----------------------------------|--|--|
| Country                            | Full unbundling |            | Shared u | Inbundling | Source*                           |  |  |
|                                    | Monthly         | Connection | Monthly  | Connection |                                   |  |  |
| Australia                          | 23.28           | 121.42     | NA       | NA         | ACCC <sup>1</sup> October<br>2003 |  |  |
| Austria                            | 21.61           | 108.03     | 10.90    | 216.06     | 9th Report                        |  |  |
| Belgium                            | 23.59           | 108.82     | 4.56     | 108.82     | 9th Report                        |  |  |
| Canada                             | 36.23           | NA         | NA       | NA         | OECD                              |  |  |
| Denmark                            | 16.34           | 88.21      | 8.07     | 205.55     | 9th Report                        |  |  |
| Finland                            | 27.95           | 432.11     | 13.28    | 208.13     | 9th Report                        |  |  |
| France                             | 20.81           | 156.00     | 5.75     | 156.00     | 9th Report                        |  |  |
| Germany                            | 23.39           | 112.19     | 9.51     | 148.46     | 9th Report                        |  |  |
| Greece                             | 21.01           | 71.56      | 10.51    | 93.16      | 9th Report                        |  |  |
| Hungary                            | 26.12           | NA         | 25.64    | NA         | OECD                              |  |  |
| Iceland                            | 26.61           | 79.57      | 9.58     | 79.57      | OECD                              |  |  |
| Ireland                            | 29.08           | 240.83     | 16.19    | 244.60     | 9th Report                        |  |  |
| Italy                              | 16.45           | 63.43      | 5.55     | 88.21      | 9th Report                        |  |  |
| Japan                              | 30.58           | NA         | 2.73     | NA         | OECD                              |  |  |
| Korea                              | 15.80           | NA         | 10.48    | NA         | OECD                              |  |  |
| Luxembourg                         | 31.32           | 367.89     | 14.87    | 388.90     | 9th Report                        |  |  |
| Netherlands                        | 19.62           | 67.20      | 4.56     | 87.41      | 9th Report                        |  |  |
| Norway                             | 28.39           | 272.73     | 28.17    | 272.73     | OECD                              |  |  |
| Portugal                           | 23.79           | 166.70     | 5.95     | 174.83     | 9th Report                        |  |  |
| Spain                              | 24.38           | 39.64      | 6.94     | 53.52      | 9th Report                        |  |  |
| Sweden                             | 23.27           | 342.14     | 11.02    | 244.36     | 9th Report                        |  |  |
| U.S. (avg)                         | 27.55           | NA         | NA       | NA         | OECD                              |  |  |
| UK                                 | 29.08           | 252.14     | 12.58    | 335.07     | 9th Report                        |  |  |
| Average                            | 24.62           | 171.70     | 10.84    | 182.67     |                                   |  |  |
| Median                             | 23.79           | 116.80     | 10.03    | 174.83     |                                   |  |  |

# **Table 6** Unbundled Local Loop Benchmarking(all prices in NZ\$ excluding GST).

\* 9<sup>th</sup> Report refers to Annex 1 of the Ninth Report on the Implementation of the Telecommunications Regulatory Package by the European Commission, available at http://europa.eu.int/information\_society/topics/ecomm/all\_about/ implementation\_enforcement/annualreports/9threport/index\_en.htm \* OECD refers to Developments in Local Loop Unbundling by the Directorate for Science, Technology, and Industry of the OECD, 10 September 2003, available at http://www.oecd.org/dataoecd/25/24/6869228.pdf.

<sup>1</sup> Final determination for model price terms and conditions of the PSTN, ULLS and LCS services.

#### 6.2. Access to Bitstream xDSL Service (Scenario B)

There is a dearth of comparable international data upon which to develop benchmark prices for bitstream xDSL access. As outlined above, this was one factor that led us towards the use of a retail minus approach for pricing this service. A standard application of retail minus pricing is not possible however because of the diversity of service offerings. For example, there are seven full speed DSL plans supplied by Telecom to business customers, with GST exclusive monthly fees ranging from \$61 to \$1600. These services have the same speed characteristics but vary in the volume of data transport available for the standard monthly fee. There is also a variety of packages for residential customers, where there are differences in the download caps as well as the speed of service.

There are broadly two ways of proceeding. One is to adopt the approach used by OXERA in their cost-benefit analysis of unbundling in New Zealand.<sup>12</sup> This was based on the observation that, with the exception of the DSLAM, the assets used in bitstream access are also the assets used to provide line sharing access. OXERA therefore started from the (benchmarked) line-sharing price and added an estimate of the monthly cost of providing and operating the DSLAM.

An alternative approach, is to use a "modified retail minus" method for pricing bitstream xDSL access. The main principle behind the modification is that data transport would be contestable if bitstream xDSL was designated, so data transport costs should be removed from the retail prices, to arrive at a modified retail price, from which a discount is subtracted.

To understand how this could be achieved, consider the following schedule of retail ADSL prices posted by Telecom's subsidiary xtra. These prices are the same as those posted by Telecom directly. The right-hand column in the following table is not the per Mb charge imposed for data in excess of the cap under each plan. Instead, it is the implied price per Mb of moving from one plan to the next largest assuming the data cap is not breached. For example, the 10c incremental price showing for Jetstream 1200 is calculated as the additional Mb allowance obtained by shifting from Jetstream 600 to Jetstream 1200 (namely 600Mb), divided by the additional price per month associated with the same shift (namely \$120 - \$61.33), and rounded to the nearest cent.

<sup>&</sup>lt;sup>12</sup> OXERA "Modelling the Impact of Unbundling of the Local Loop Network and the Fixed Public Data Network", December 2003

| Plan            | Data cap | Connection<br>Fee <sup>1</sup> | Monthly<br>Fee <sup>2</sup> | Incremental<br>Price per<br>Mb |
|-----------------|----------|--------------------------------|-----------------------------|--------------------------------|
| Jetstream 600   | 600Mb    | \$220.44                       | \$61.33                     |                                |
| Jetstream 1200  | 1200Mb   | \$220.44                       | \$120.00                    | 10c                            |
| Jetstream 1800  | 1800Mb   | \$220.44                       | \$176.89                    | 9c                             |
| Jetstream 3000  | 3000Mb   | \$220.44                       | \$292.00                    | 10c                            |
| Jetstream 5000  | 5000Mb   | \$220.44                       | \$458.00                    | 8c                             |
| Jetstream 10000 | 10000Mb  | \$220.44                       | \$888.00                    | 9c                             |
| Jetstream 20000 | 20000Mb  | \$220.44                       | \$1600.00                   | 7c                             |

Table 7 Retail Commercial ADSL Prices (excluding GST) as at December 2003.

Source: <u>www.xtrabusiness.co.nz</u>

1: Full wiring and connection fee, excludes ISP joining fee.

2: Excludes ISP's fee.

If these prices obey standard concepts of rationality, then they show that the cost of data transport is on average no greater than the smallest figure in the right-hand column. If the cost of data transport was greater than that (on average) then the difference in monthly fees between Jetstream 10000 and Jetstream 20000 would be larger than it is.

The minimum incremental price of (within-cap) data may not be an accurate estimate of data transport costs. If this information is used to modify the retail prices, it would therefore be prudent to limit the scale of the possible errors by modifying the price of the service with the smallest data cap, namely Jetstream 600. The modified retail price is therefore defined as the retail price of the full-speed DSL service with the smallest data bundle, minus the product of the minimum incremental price of (within-cap) data and the minimum number of bundled units of data. From this price, a standard regulatory discount such as 16% can be deducted.

This algorithm has some nice properties. The first is that it would make data transport contestable. Secondly, it only uses information from the prices posted by the access provider. Thirdly, although the access provider is able to manipulate (and indeed to minimise) the size of the modification, this is costly in respect of revenue from large data bundle services. We would therefore expect that, if this approach was adopted, over time the minimum incremental price of data transport (as derived from the structure of posted prices) would approach the cost of data transport.

The modified retail minus approach is not differentiated by type of customer, which is both consistent with the cost of service and less sensitive to boundary issues concerning home-based businesses. We see this as an advantage. Further, the method would avoid any need to concern ourselves with weighting the various types of retail DSL offerings to arrive at some average price. This change eliminates a potentially severe distortion in the approach used in our earlier paper.

The connection fee can be treated as a standard application of the retail minus principle. Again we recommend the use of a 16% discount off the retail price of \$220.44, which results in a wholesale price of **\$185.17**.

#### 6.3. Partial Private Circuits (Fixed PDN) Prices

In this section we develop benchmark prices for the fixed public data network services where these comprise leased lines or partial private circuits (scenarios C and D). Wholesale data tail services are available to some extent in the European Union (where they are known as Partial Private Circuits, or PPCs), and so we use the available data from European Union countries for generating benchmark prices for these services.

PPCs are differentiated according to the length of the tail and the speed of transmission. Accordingly, we report prices for two lengths (2km and 5km) and two speeds (2Mbit/s and 34Mbit/s). The two speeds can be mapped directly to scenarios C and D respectively. Data for comparable services for Australia and the United States were not readily available in the public domain and consequently have not been used in the benchmarking of fixed PDN prices.

Due to the large variation in the prices for these services, we have adopted the medians as the benchmark prices.

#### 6.3.1. Access to 2Mbit/s Data Tails (Scenario C)

Table 8 presents data on the prices of 2Mbit/s PPCs for European Union countries after converting to New Zealand dollars using the exchange rates in the Appendix. This gives a connection fee of **\$2,491** for either a 2km or 5km tail, and a monthly rental of **\$577** for a 2km tail and **\$694** for a 5km tail.

|             | · I     |            | 0 /     |            |
|-------------|---------|------------|---------|------------|
| Country     | 2km     | Tail       | 5km     | n Tail     |
|             | Monthly | Connection | Monthly | Connection |
| Belgium     | 577     | 4,914      | 1,041   | 4,914      |
| Denmark     | 161     | 1,798      | 161     | 1,798      |
| Germany     | 335     | 3,271      | 718     | 3,271      |
| Greece      | 777     | 5,816      | 777     | 5,816      |
| Spain       | 997     | 1,267      | 1,211   | 1,267      |
| France      | 809     | 2,436      | 922     | 2,436      |
| Ireland     | 1,076   | 1,604      | 1,217   | 1,604      |
| Italy       | 694     | 1,126      | 694     | 1,126      |
| Luxembourg  | 505     | 2,947      | 761     | 2,947      |
| Netherlands | 620     | 991        | 620     | 991        |
| Austria     | 595     | 2,973      | 595     | 2,973      |
| Portugal    | 266     | 2,973      | 266     | 2,973      |
| Finland     | 305     | 1,857      | 410     | 1,857      |
| Sweden      | 459     | 2,491      | 602     | 2,491      |
| UK          | 432     | 5,092      | 483     | 5,092      |
| Average     | 574     | 2,770      | 699     | 2,770      |
| Median      | 577     | 2,491      | 694     | 2,491      |

| Table 8 2Mbit/s Partial Private Circuit Prices in the EU |
|----------------------------------------------------------|
| (all prices in NZ\$, excluding GST).                     |

*Source*: Ninth Report of the Commission of the European Communities on the Implementation of the Telecommunications Regulatory Package.

#### 6.3.2. Access to PPC Services at Speeds in Excess of 2Mbit/s

Table 9 presents data on the prices of 34Mbit/s PPCs for European Union countries after converting to New Zealand dollars using the exchange rates in the Appendix. This gives a connection fee of \$5,355 for either a 2km or 5km tail, and a monthly rental of \$2,754 for a 2km tail and \$3,983 for a 5km tail.

**Table 9** 34Mbit/s Partial Private Circuit Prices in the EU(all prices in NZ\$, excluding GST).

|         | 2km     | n Tail     | 5kr     | n Tail     |
|---------|---------|------------|---------|------------|
| Country | Monthly | Connection | Monthly | Connection |
| Belgium | 1,784   | 4,914      | 4,658   | 4,914      |
| Denmark | 1,735   | 45,583     | 4,639   | 45,583     |
| Germany | 1,883   | 9,911      | 4,381   | 9,911      |
| Greece  | 3,209   | 13,962     | 4,603   | 13,962     |
| Spain   | 4,214   | 5,362      | 5,667   | 5,362      |
| France  | NA      | NA         | NA      | NA         |

| Median      | 2,754 | 5,355  | 3,983 | 5,355  |
|-------------|-------|--------|-------|--------|
| Average     | 3,014 | 9,043  | 4,150 | 9,043  |
| UK          | 2,812 | 5,347  | 3,359 | 5,347  |
| Sweden      | 3,185 | 13,143 | 3,585 | 13,143 |
| Finland     | 1,550 | 3,822  | 2,024 | 3,822  |
| Portugal    | 1,996 | 3,964  | 1,996 | 3,964  |
| Austria     | 2,973 | 2,973  | 2,973 | 2,973  |
| Netherlands | 2,345 | 6,739  | 2,345 | 6,739  |
| Luxembourg  | 2,696 | 5,946  | 3,045 | 5,946  |
| Italy       | 3,568 | 2,151  | 5,154 | 2,151  |
| Ireland     | 8,240 | 2,787  | 9,677 | 2,787  |

*Source*: Ninth Report of the Commission of the European Communities on the Implementation of the Telecommunications Regulatory Package.

#### 6.4. Summary of Initial Prices

Table 10 summarises the initial prices that we recommend. A number of these have been used in OXERA's cost-benefit analysis.

**Table 10** Initial Prices for the Cost-Benefit Analysis(all prices in New Zealand dollars, excluding GST).

| Scenario | Service       | Monthly Fee          | Connection<br>Charge |
|----------|---------------|----------------------|----------------------|
| Α        | Full access   | 23.79                | 116.80               |
|          | Shared access | 10.03                | 174.83               |
| В        | Residential   | depends on<br>method | 185.17               |
|          | Commercial    | depends on<br>method | 185.17               |
| С        | 2km tail      | 577.00               | 2,491.00             |
|          | 5km tail      | 694.00               | 2,491.00             |
| D        | 2km tail      | 2,754.00             | 5,355.00             |
|          | 5km tail      | 3,983.00             | 5,355.00             |

In addition, Appendix 1 contains a selection of supplementary charges that comprise the multi-part tariffs in European Union countries for unbundled services. Although they do not fit with the two-part tariff structure of the costbenefit analysis, some prices of this nature are of relevance for the Commission.

### References

ACCC (2002). Pricing of Unconditioned Local Loop Services (ULLS), Final Report.

Andersen (2002). Study on the Implementation of Cost Accounting Methodologies and Accounting Separation by Telecommunications Operators with Significant Market Power.

Belfin, R., M. Lukanowicz, P. Pisjak, R. Schnepfleitner, & A. Schrems (1999). Unbundling of the Local Loop in Austria. *Mimeo*, Austrian Telecommunications Regulatory Authority.

Bourreau, M. and P. Doğan (2002). Service-based vs. Facility-Based Competition in Local Access Networks. *Mimeo*, http://www.univparis13.fr/cepn/policyLL.pdf, accessed 28 July 2003.

Bourreau, M. and P. Doğan (2003). Unbundling the local loop. *European Economic Review*, forthcoming.

Cave, Martin (2002). Cost Analysis and Cost Modelling for Regulatory Purposes: UK Experience.

Commerce Commission (2003). Telecommunications Act 2001: Section 64 Reviews into Unbundling the Local Loop Network and the Fixed Public Data Network – Issues Paper.

Courcoubetis, C. (2002). Cost Based Pricing - Course Notes.

Gregg, B. J. (2003). A Survey of Unbundled Network Element Prices in the United States. Public Service Commission of West Virginia.

OECD (2003). Developments in Local Loop Unbundling.

Ovum (2002). Partial Private Circuits in the EU. *Mimeo*, http://www.ovum.com, accessed 2 August 2002.

Sidak, J. G. & H. J. Singer (2002). How can regulators set nonarbitrary interim rates? The case of local loop unbundling in Ireland. *Journal of Network Industries*, **3**: 273 – 295.

Squires Sanders (2002). The Legal Study on Part II of the Local Loop Sectoral Inquiry (Public Version)

# **Appendix 1: Supplementary Charges**

Table 11 contains a selection of supplementary charges associated with unbundled telecommunication services in European Union countries.

| Country         | Fee Туре                            | Fee    |
|-----------------|-------------------------------------|--------|
| The Netherlands | Access Line Test Fee                | 39     |
| Portugal        | Assessment of Eligibility           | 29.33  |
| Belgium         | Cancellation Fee                    | 20.97  |
| France          | Cancellation Fee                    | 40.7   |
| Portugal        | Cancellation Fee                    | 61.9   |
| Spain           | Cancellation Fee                    | 18.03  |
| Belgium         | Deactivation Fee                    | 28.28  |
| Italy           | Deactivation Fee                    | 45     |
| Greece          | Disconnection Fee                   | 42.55  |
| The Netherlands | Disconnection Fee                   | 134    |
| Ireland         | Disconnection Fee (line share only) | 51.68  |
| Ireland         | Fault Clearance                     | 59.61  |
| Italy           | Fault Elimination Fee               | 23.65  |
| Italy           | Fault Identification Fee            | 228.89 |
| Austria         | Information on Loop Boundaries      | 54.07  |
| Belgium         | Inquiry Fee                         | 19.78  |
| Norway          | Inquiry Fee                         | 18.73  |
| Portugal        | Lawful Intervention                 | 44.89  |
| Ireland         | Line testing fee                    | 27.36  |
| Spain           | Line testing fee                    | 73     |
| The Netherlands | Migration Fee                       | 134    |
| Spain           | Notification of Non-existent Fault  | 38     |
| Iceland         | Site Inspection Fees (per hour)     | 45     |
| France          | Wrongful Intervention               | 125.77 |

 Table 11 Supplementary Charges for Unbundled Services in EU countries
 (all prices in Euros, excluding VAT).

Source: Squires Sanders "Legal study on part II of the local loop sectoral inquiry"

| Data    |
|---------|
| Source  |
| ä       |
| ppendix |
| App     |

In this appendix we report the source data, in original currencies, that were used in our benchmarking analysis.

# Full and shared unbundled local loops

| Note              |            | model         Weighted average: 25% Band 1           ions of         and 75% Band 2, following           :S         Pricing of Unconditioned Local           r 2003.         Loop Services, ACCC March 2002. |                        |                        | Unweighted average of price across all bands. |                        |                        |                        |                        |                        |         | Unweighted average of prices for different service offerings. | Rentals updated to reflect<br>ComReg decision D12/03 of 28<br>May 2003. |                        |       |       |                        |             |
|-------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------|---------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-------|-------|------------------------|-------------|
| Source*           |            | Final determination for model<br>price terms and conditions of<br>the PSTN, ULLS and LCS<br>services, ACCC October 2003.                                                                                     | 9 <sup>th</sup> Report | 9 <sup>th</sup> Report | OECD                                          | 9 <sup>th</sup> Report | OECD    | OECD                                                          | 9 <sup>th</sup> Report                                                  | 9 <sup>th</sup> Report | OECD  | OECD  | 9 <sup>th</sup> Report | oth n       |
| Ibundling         | Connection | AA                                                                                                                                                                                                           | 109.00                 | 54.90                  | AN                                            | 104.40                 | 105.00                 | 78.70                  | 74.90                  | 47.00                  | NA      | 34.01                                                         | 123.40                                                                  | 44.50                  | NA    | NA    | 196.20                 | 07.77       |
| Shared unbundling | Monthly    | A                                                                                                                                                                                                            | 5.50                   | 2.30                   | NA                                            | 4.10                   | 6.70                   | 2.90                   | 4.80                   | 5.30                   | 11.20   | 4.10                                                          | 8.17                                                                    | 2.80                   | 1.44  | 4.76  | 7.50                   |             |
| Indling           | Connection | 103.00                                                                                                                                                                                                       | 54.50                  | 54.90                  | Ν                                             | 44.80                  | 218.00                 | 78.70                  | 56.60                  | 36.10                  | NA      | 34.01                                                         | 121.50                                                                  | 32.00                  | NA    | NA    | 185.60                 |             |
| Full unbundling   | Monthly    | 19.75                                                                                                                                                                                                        | 10.90                  | 11.90                  | 18.73                                         | 8.30                   | 14.10                  | 10.50                  | 11.80                  | 10.60                  | 11.41   | 11.38                                                         | 14.67                                                                   | 8.30                   | 16.14 | 7.18  | 15.80                  |             |
| Currency          |            | AUD                                                                                                                                                                                                          | Euro                   | Euro                   | USD                                           | Euro                   | Euro                   | Euro                   | Euro                   | Euro                   | USD     | USD                                                           | Euro                                                                    | Euro                   | USD   | USD   | Euro                   |             |
| Country           |            | Australia                                                                                                                                                                                                    | Austria                | Belgium                | Canada                                        | Denmark                | Finland                | France                 | Germany                | Greece                 | Hungary | Iceland                                                       | Ireland                                                                 | Italy                  | Japan | Korea | Luxembourg             | Motherlende |

WWW.COVec.co.hz

35

| USD  | 13.60 | 130.60 | 13.49 | 130.60 | OECD                          | Unweighted average of prices for different service offerings.   |
|------|-------|--------|-------|--------|-------------------------------|-----------------------------------------------------------------|
| Euro | 12.00 | 84.10  | 3.00  | 88.20  | 9 <sup>th</sup> Report        |                                                                 |
| Euro | 12.30 | 20.00  | 3.50  | 27.00  | 27.00 9 <sup>th</sup> Report  |                                                                 |
| Euro | 11.40 | 167.60 | 5.40  | 119.70 | 9 <sup>th</sup> Report        |                                                                 |
| USD  | 15.37 | NA     | NA    | ΝA     | OECD                          | Average of prices for Montana<br>and Ohio (highest and lowest). |
| Euro | 14.80 | 128.30 | 6.40  | 170.50 | 170.50 9 <sup>th</sup> Report |                                                                 |
|      |       |        |       |        |                               |                                                                 |
| ×    |       | t.     |       | E      |                               | -<br>-<br>-<br>-                                                |

Appendix 2

available at

and OECD refers to Developments in Local Loop Unbundling by the Directorate for Science, Technology, and Industry of the OECD, 10 September http://europa.eu.int/information\_society/topics/ecomm/all\_about/implementation\_enforcement/annualreports/9threport/index\_en.htm 2003, available at http://www.oecd.org/dataoecd/25/24/6869228.pdf.

| 2   |
|-----|
| lix |
| ŭ   |
| ď   |
| AI  |

# **Partial Private Circuits**

Regulatory Package by the European Commission, available at http://europa.eu.int/information\_society/topics/ecomm/all\_about/ All data for partial private circuits were sourced from Annex 1 of the Ninth Report on the Implementation of the Telecommunications implementation\_enforcement/annualreports/9threport/index\_en.htm.

| Country     | Currency |         | 2 Mbit/s   | it/s    |            |         | 34 Mbit/s  | oit/s   |            |
|-------------|----------|---------|------------|---------|------------|---------|------------|---------|------------|
|             |          | 2 km    | ε          | 5 km    | ε          | 2 km    | ε          | 5 km    | ε          |
|             |          | Monthly | Connection | Monthly | Connection | Monthly | Connection | Monthly | Connection |
| Belgium     | Euro     | 291     | 2479       | 525     | 2479       | 006     | 2479       | 2350    | 2479       |
| Denmark     | Euro     | 82      | 913        | 82      | 913        | 881     | 23152      | 2356    | 23152      |
| Germany     | Euro     | 169     | 1650       | 362     | 1650       | 950     | 5000       | 2210    | 5000       |
| Greece      | Euro     | 392     | 2934       | 392     | 2934       | 1619    | 7044       | 2322    | 7044       |
| Spain       | Euro     | 503     | 639        | 611     | 639        | 2126    | 2705       | 2859    | 2705       |
| France      | Euro     | 408     | 1229       | 465     | 1229       | NA      | NA         | NA      | NA         |
| Ireland     | Euro     | 543     | 808        | 614     | 808        | 4157    | 1406       | 4882    | 1406       |
| Italy       | Euro     | 350     | 568        | 350     | 568        | 1800    | 1085       | 2600    | 1085       |
| Luxembourg  | Euro     | 255     | 1487       | 384     | 1487       | 1360    | 3000       | 1536    | 3000       |
| Netherlands | Euro     | 313     | 500        | 313     | 500        | 1183    | 3400       | 1183    | 3400       |
| Austria     | Euro     | 300     | 1500       | 300     | 1500       | 1500    | 1500       | 1500    | 1500       |
| Portugal    | Euro     | 134     | 1500       | 134     | 1500       | 1007    | 2000       | 1007    | 2000       |
| Finland     | Euro     | 154     | 937        | 207     | 937        | 782     | 1928       | 1021    | 1928       |
| Sweden      | Euro     | 225     | 1220       | 295     | 1220       | 1560    | 6438       | 1756    | 6438       |
| UK          | Euro     | 220     | 2591       | 246     | 2591       | 1431    | 2721       | 1709    | 2721       |

WWW.COVEC.CO.NZ

# **Appendix 3: Exchange Rates**

Exchange rates used to convert foreign currencies to New Zealand dollars were supplied to us by the Commission. These were calculated using the same methodology that the Commission used in its final interconnection determination. In particular, the exchange rates supplied to us were calculated on the basis of 10-year historical averages to the end of September 2003.<sup>13</sup>

| Country     | Currency | Exchange rate<br>(Foreign/NZD) |
|-------------|----------|--------------------------------|
| Australia   | AUD      | 0.8483                         |
| Austria     | Euro     | 0.5045                         |
| Belgium     | Euro     | 0.5045                         |
| Canada      | CAD      | 0.8005                         |
| Denmark     | Krone    | 3.7740                         |
| Finland     | Euro     | 0.5045                         |
| France      | Euro     | 0.5045                         |
| Germany     | Euro     | 0.5045                         |
| Greece      | Euro     | 0.5045                         |
| Hungary     | Forint   | 119.5597                       |
| Iceland     | Krona    | 41.5985                        |
| Ireland     | Euro     | 0.5045                         |
| Italy       | Euro     | 0.5045                         |
| Japan       | Yen      | 63.2065                        |
| Korea       | Won      | 582.2994                       |
| Luxembourg  | Euro     | 0.5045                         |
| Netherlands | Euro     | 0.5045                         |
| Norway      | Kroner   | 4.1215                         |
| Portugal    | Euro     | 0.5045                         |
| Spain       | Euro     | 0.5045                         |
| Sweden      | Krona    | 4.5282                         |
| US          | USD      | 0.5577                         |
| UK          | GBP      | 0.3563                         |

For some countries, the exchange rates above did not correspond to the same currencies that our source data in Appendix 2 was presented in. This is because all the data in the 9<sup>th</sup> report are in Euro and all the data in the OECD report are in US dollars. Where it was reported, we used the same exchange rate that the authors of these reports had used to convert our source data back to the currency required for the table above. For some countries in the OECD report, the relevant exchange rates were not reported and so we used an

<sup>&</sup>lt;sup>13</sup> The exchange rates used in the final interconnection determination used nine years of historical data and one year of forecasts.

average exchange rate for April 2002, which is the time at which the OECD data were collected.

| Country | Source Data<br>Currency | Required<br>Currency | Exchange<br>Rate | Source*                         |
|---------|-------------------------|----------------------|------------------|---------------------------------|
| Canada  | USD                     | CAD                  | 1.549            | OECD, Table 13, (f3-b)          |
| Denmark | Euro                    | DKK                  | 7.431            | 9th Report, Annex I, Table 9.1  |
| Hungary | USD                     | Forint               | 273.680          | www.oanda.com, April 02 average |
| Iceland | USD                     | Krona                | 97.330           | www.oanda.com, April 02 average |
| Japan   | USD                     | Yen                  | 119.775          | OECD, Table 13, (s3)            |
| Korea   | USD                     | Won                  | 1281.500         | OECD, Korea Appendix            |
| Norway  | USD                     | Kroner               | 8.607            | www.oanda.com, April 02 average |
| Sweden  | Euro                    | Krona                | 9.244            | 9th Report, Annex I, Table 9.1  |
| UK      | Euro                    | Pound                | 0.700            | 9th Report, Annex I, Table 9.1  |

These exchange rates are shown in the following table.

\* 9<sup>th</sup> Report refers to Annex 1 of the Ninth Report on the Implementation of the Telecommunications Regulatory Package by the European Commission, available at http://europa.eu.int/information\_society/topics/ecomm/all\_about/ implementation\_enforcement/annualreports/9threport/index\_en.htm \*OECD refers to Developments in Local Loop Unbundling by the Directorate for Science, Technology, and Industry of the OECD, 10 September 2003, available at http://www.oecd.org/dataoecd/25/24/6869228.pdf.

## **Appendix 4: Operational Support Systems**

This appendix documents our attempts at determining whether the LLU charges that we used for our benchmarking analysis include charges for operational support systems (OSS) or not. To maintain consistency and transparency and to overcome language difficulties, almost all of the prices that we used were obtained from the 9<sup>th</sup> EU Implementation Report or the 2003 OECD report, "Developments in Local Loop Unbundling".

Neither of these sources gave any breakdown of the prices that were charged in each country. However we would hope that each report used a consistent methodology for determining the reported prices for each country.

We have attempted to look more deeply into the issue of whether OSS charges are included in our benchmark prices by going to the original reference unbundling offers or regulatory decisions for each country and trying to determine the composition of these prices. In many cases, this was impossible due to the source documents not being available in English. For some other countries where English documents were available, there was not a clear indication of the magnitude of OSS charges in the prices quoted. Overall, therefore, we are unable to clearly establish whether or not our benchmark prices include charges for OSS.

#### Australia

The ACCC allows A\$10 of the monthly charge to be for ULL-specific costs which includes OSS costs. See <u>http://www.accc.gov.au/telco/fs-telecom.htm</u>, section 10.2.4:

For the reasons detailed above, the Commission considers that the ULLS-specific cost charge for the indicative prices for the ULLS should be \$10 per SIO per month for the periods 2003-04, 2004-05 and 2005-06.

#### Austria

Latest reference unbundling offer is at <u>www.telekom.at/Content.Node2/dateien/standardentbuendelunsgsangebot.</u> <u>pdf</u> but is only available in German. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Belgium

OSS services for ordering, installation, and repair are charged separately (therefore not included in our figures).

#### See

<u>http://www.belgacom.be/web/car/documents/bruo/AA\_BRUO\_MAIN\_B</u> ODY\_v1.4.pdf p.31:

**Operation of ULL Services** 

The Beneficiary is given access to Belgacom OSS for the ordering of ULL Services / Installation and repair. ... In this respect the Beneficiary will be charged for the access to the OSS and the information retrievals itself Belgacom according to the principles set out in Annex H.

Prices for various OSS activities can be found in <a href="http://www.belgacom.be/web/car/documents/bruo/Annex\_H1.1\_RC\_SD2">http://www.belgacom.be/web/car/documents/bruo/Annex\_H1.1\_RC\_SD2</a> <a href="http://www.belgacom.be/web/car/web/car/documents/bruo/Annex\_H1.1\_RC\_SD2">http://www.belgacom.be/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/web/car/w

#### Canada

We are unable to determine whether the Canadian prices include OSS charges or not. We obtained these prices from the 2003 OECD report, "Developments in Local Loop Unbundling".

#### Denmark

Latest reference offer is at <u>www.itst.dk/image.asp?page=image&objno=130051736</u> but only in Danish. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Finland

Latest reference offer is at

www.sonera.fi/GetImages/GetImages\_GetImage\_pdf/0,1440,18635,00.pdf but only in Finnish. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### France

Latest reference offer is at www.francetelecom.com/fr/groupe/connaitre/publications/ref/offre\_acces. html but only in French. Some English-language documents relating to unbundling are available at http://www.arttelecom.fr/publications/ligndir9-eng.htm#42 and http://www.arttelecom.fr/textes/avis/00/00-1176-ann-eng.htm. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Germany

Latest reference offer is at

<u>www.telekom.de/dtag/ipl1/cda/level4s\_a/0,3682,1328,00.html</u> and approved prices are at <u>www.regtp.de/reg\_tele/01434/07/index.html</u> but only in German. Some English-language information is available at <u>http://www.regtp.de/en/reg\_tele/02608/00/index.html</u>. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Greece

Latest reference offer is at

<u>www.eett.gr/gr\_pages/telec/LLU/LLU\_FullUnbundling\_RUO.pdf</u> and revised prices are at <u>www.eett.gr/gr\_pages/telec/LLU/AP\_277\_63.pdf</u> but only in Greek. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Hungary

We obtained prices from the 2003 OECD report, "Developments in Local Loop Unbundling" and are unable to determine whether they include OSS charges.

#### Iceland

We obtained prices from the 2003 OECD report, "Developments in Local Loop Unbundling" and are unable to determine whether they include OSS charges.

#### Ireland

RUO includes various separate charges for OSS-related services but it is not clear to what extent OSS costs are included in these charges or are included in the connection and monthly fees.

See <u>www.eircom.ie/bveircom/pdf/aro\_ver1.18\_um.pdf</u> for the RUO and <u>www.eircom.ie/bveircom/pdf/aropricelist.pdf</u> for the prices, but note some prices have been revised by ComReg in www.comreg.ie/\_fileupload/publications/ComReg0355.pdf.

#### Italy

Latest reference offer is available at <u>www.wholesale-telecomitalia.it</u> but only in Italian. The Italian communications authority at <u>http://www.agcom.it/eng/documents/PIBs\_on\_LLU.pdf</u> suggests (p. 8):

Access to the notified operator's OSS where necessary for LLU purposes, should be granted to all access seekers on fair and non-discriminatory terms.

Our prices for Italy were obtained from the 9<sup>th</sup> EU Implementation Report and are we unable to determine the extent to which these include OSS charges.

#### Japan

We obtained prices from the 2003 OECD report, "Developments in Local Loop Unbundling" and are unable to determine whether they include OSS charges.

#### Korea

We obtained prices from the 2003 OECD report, "Developments in Local Loop Unbundling" and are unable to determine whether they include OSS charges.

#### Luxembourg

The latest reference unbundling offer is available at <u>http://interconnect.ept.lu</u> however a password is required and although we requested one it was not forthcoming. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Netherlands

Regulatory determination is at

www.opta.nl/index.asp?url=%2Fnieuwsenpublicaties%2Fsoortdoc%2Easp&i d=1119 but only in Dutch. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Norway

The latest reference offer is at

www.jara.no/produktomraader/operatoeraksess/pdf/operatoraksess\_11080 3.pdf but only in Norwegian. We obtained prices from the 2003 OECD report, "Developments in Local Loop Unbundling" and are unable to determine whether they include OSS charges.

#### Portugal

The latest reference offer is at <u>www.ptcomunicacoes.pt/operadores/ficheiros/orall.zip</u> but only in Portugese. Updates to prices and conditions by the regulator are at <u>http://www.icp.pt/template12.jsp?categoryId=62509</u> (in English). We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### Spain

The latest reference offer is available on <u>www.telefonica.es</u> but only in Spanish. We obtained prices from the 9<sup>th</sup> EU Implementation Report and are unable to determine whether these include OSS charges.

#### U.S.

FCC decided in February 2003 that, among other things, incumbent LECs must provide unbundled access to their operations support systems for relevant services but does not state whether these must be charged separately.

#### See

http://www.fcc.gov/Daily\_Releases/Daily\_Business/2003/db0220/DOC-231344A2.pdf

*OSS Functions – Incumbent LECs must offer unbundled access to their operations support systems for qualifying services. OSS consists of pre-ordering, ordering,* 

provisioning, maintenance and repair, and billing functions supported by an incumbent LEC's databases and information. The OSS element also includes access to all loop qualification information contained in any of the incumbent LEC's databases or other records.

#### U.K.

Oftel has decided that BT should be able to recover reasonable OSS set-up costs as part of the local loop connection charge. Thus OSS setup cost recovery is included in our connection charge figure. See <a href="http://www.oftel.gov.uk/publications/broadband/llu/llu0302.htm">http://www.oftel.gov.uk/publications/broadband/llu/llu0302.htm</a>,

paragraph 2.3:

Oftel accepts that BT has incurred significant costs in the development of LLU, in particular its operational support system ('OSS') and understands BT's concern about the recovery of these charges. The issue of alternative methods of cost recovery was dealt with as part of the August 2000 document, 'Access to bandwidth: conclusions on charging principles and further indicative charges'. There, (at paragraph 3.33) it states that reasonable set up costs should be recovered from the connection charge on individual loops. The length of time over which the charge can be made should be varied, to ensure that costs are fully recovered (rather than to vary charges over time to ensure full recovery takes place after exactly five years, as BT suggests). **APPENDIX 4: International summary statistics** 

| Statistics |
|------------|
| ≥          |
| na         |
| Ē          |
|            |
| 3          |
| Sul        |
|            |
|            |
|            |
|            |
|            |
|            |

| Sub-loop<br>Unbundling?<br>(12)                                  | ×            | >             | >            | ×             | >             | ×             | ×                      | >             | >             | >             | ×             | ×             | ×             | >             | >             | ×             | >             | >             |
|------------------------------------------------------------------|--------------|---------------|--------------|---------------|---------------|---------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Bitstream<br>Access?<br>(12)                                     | >            | >             | >            | ×             | >             | >             | ×                      | >             | >             | ×             | >             | ×             | ×             | >             | >             | ×             | >             | ×             |
| Line<br>Sharing?<br>(12)                                         | >            | >             | >            | >             | >             | >             | >                      | >             | >             | >             | >             | >             | ×             | >             | >             | ×             | >             | ×             |
| (12)                                                             | >            | >             | >            | >             | >             | >             | >                      | >             | >             | >             | >             | >             | ×             | >             | >             | ×             | >             | >             |
| Total Telephone<br>subscribers<br>per 100 <sup>(11)</sup>        | 117.83       | 128.5         | 128.24       | 101.26        | 152.9         | 136.71        | 152.85                 | 125.82        | 141.27        | 117.36        | 116.8         | 138.81        | 106.65        | 157.31        | 160.53        | 152.02        | 135.78        | 114.7         |
| Estimated PC's<br>per 100<br>inhab. 2002 <sup>(10)</sup>         | 51.58        | 33.54         | 24.16        | 48.7          | 57.68         | 43.49         | 45.14                  | 39.07         | 19.48         | 38.25         | 55.58         | 42.84         | 39.26         | 50.8          | 56.12         | 53.83         | 36.62         | 62.5          |
| Internet Users<br>per 10,000<br>Inhab. 2002 <sup>(9)</sup>       | 4272.03      | 4093.64       | 3286.29      | 4838.61       | 4651.81       | 4237.29       | 6076.39                | 2709.23       | 3010.77       | 4492.62       | 5518.91       | 5304.11       | 4843.75       | 5048.29       | 5730.74       | 3261.79       | 4061.74       | 5375.06       |
| Internet Hosts I<br>per 10,000 F<br>Inhab. 2002 <sup>(8)</sup> I | 1304.16      | 450.95        | 325.35       | 963.2         | 1556.74       | 314.08        | 2370.17                | 347.21        | 119.13        | 559.22        | 148.37        | 1937.14       | 1099.13       | 561.33        | 949.54        | 770.34        | 485.03        | 3728.74       |
| Rural<br>% <sup>(۲)</sup>                                        | 91.20% 8.80% | 67.40% 32.60% | 97.40% 2.60% | 78.90% 21.10% | 85.10% 14.90% | 87.70% 12.30% | 92.70% 7.30%           | 59.30% 40.70% | 67.10% 32.90% | 78.90% 21.10% | 82.50% 17.50% | 89.60% 10.40% | 85.90% 14.10% | 75.00% 25.00% | 83.30% 16.70% | 67.30% 32.70% | 89.50% 10.50% | 77.40% 22.60% |
| Urban<br>بy <sup>(م)</sup> % <sup>(م)</sup>                      | 3 91.20%     | 97 67.40%     | 338 97.40%   | 3 78.90%      | 125 85.10%    | 231 87.70%    | 3 92.70%               | 57 59.30%     |               |               |               | 393 89.60%    | 15 85.90%     |               | 20 83.30%     | 176 67.30%    | 241 89.50%    | 31 77.40%     |
| Pop.<br>Density <sup>(a)</sup>                                   | 9            | 9             | 5            | ÷             | 2             | 9             | 6                      | 3             | Ģ             | e<br>S        | 9             | 2             | 4             | 9             | 4             | 80            | 6             | 4             |
| Рор.<br>(m) <sup>(4)</sup>                                       | 1 19.66      | 3 8.16        | 2 10.35      | 4 31.41       | 3 5.37        | 7 82.6        | 7 0.29                 | 9 3.93        | 9 56.46       | `             | 3 47.6        |               | 7 3.94        | 3 4.56        | 3 8.94        | 4 7.28        | 4 59.09       | 3 288.4       |
| GDP<br>per<br>capita <sup>(3)</sup>                              | \$18,481     | \$23,243      | \$22,022     | \$23,484      |               | \$22,267      | \$26,617               | \$26,829      |               | \$32,554      | \$9,023       | \$23,793      | \$13,197      | \$37,116      | \$23,546      | \$33,884      | \$23,694      | \$35,843      |
| Broadband<br>Access per 100<br>inhabitants <sup>(2)</sup>        | 2.65         | 6.98          | 10.34        | 13.27         | 11.11         | 4.84          | 11.22                  |               |               | 8.6           | 23.17         | 9.2           | 2.07          | 5.39          | 9.16          | 9.13          | 3.63          | 9.25          |
| OECD<br>Rank <sup>(1)</sup>                                      | 20           | 11            | 5            | 2             | 4             | 14            | e                      | 24            | 19            | 0             | -             | 9             | J 22          | 13            | 7             | 8             | 18            | 10            |
| Country                                                          | Australia    | Austria       | Belgium      | Canada        | Denmark       | Germany       | Iceland <sup>(1)</sup> | Ireland       | Italy         | Japan         | Korea (Rep)   | Netherlands   | New Zealand   | Norway        | Sweden        | Switzerland   | UK            | NS            |

The countries appearing in this table are those identified by the Commission in the Issues Paper.

Australia, Austria, Belgium, Canada, Denmark, Germany, Ireland, Italy, Japan, Netherlands, Norway, South Korea, Switzerland, United Kingdom & United States TelstraClear submitted further international experience on: Iceland & Sweden

# Notes

- OECD Broadband access per 100 inhabitants, June 2003, http://www.oecd.org/department/0,2688,en\_2649\_34225\_1\_1\_1\_1\_1,00.html OECD Broadband access per 100 inhabitants, June 2003, http://www.oecd.org/department/0,2688,en\_2649\_34225\_1\_1\_1\_1\_1,00.html
  - ITU Basic Indicators US\$ 2001, 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at\_glance/basic02.pdf
    - ITU Statistics Basic Indicators 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at\_glance/basic02.pdf

- ITU Statistics Basic Indicators 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at\_glance/basic02.pdf UN, Population of urban and rural areas, 2001, http://www.un.org/esa/population/publications/wup2001/wup2001dh.pdf UN, Population of urban and rural areas, 2001, http://www.un.org/esa/population/publications/wup2001/wup2001dh.pdf
- ITU Information Technology Summary Statistics 2002, 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at glance/Internet02.pdf
- ITU Information Technology Summary Statistics 2002, 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at\_glance/Internet02.pdf
  - ITU Information Technology Summary Statistics 2002, 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at\_glance/Internet02.pdf
- ITU Information Technology Summary Statistics 2002, 24 April 2003, http://www.itu.int/ITU-D/ict/statistics/at\_glance/basic02.pdf
- OECD Working Party of Telecommunication and Information Services Policies "Developments in Local Loop Unbundling", 7 August 2003 JT00148010

**APPENDIX 5**: ADSL Bitstream Access Service Definition

#### Service Description of an ADSL Bitstream Access Service

#### 1. User level specification

This service supports a set of applications intended for home and small enterprise use. In general, it is a high speed IP access service which provides good performance, but could not typically support extensive use of mission critical applications which require excellent real-time network performance or availability. Typically, the service will provide network capability to serve customers with between 1 and 5 PCs.

The functionality typically includes the following:

- 'always on' network connection;
- static or dynamic IP addressing;
- web browsing with occasional large file download, web based e-mail and gaming
- client/server e-mail functionality;
- File Transfer Protocol (FTP), newsgroup server access etc;
- peer to peer file sharing applications, *subject to speed limitations at peak times;*
- Virtual Private Network (VPN) access, remote Local Area Network, Citrix and terminal services, remote desktop applications, *subject to speed limitations at peak times;*
- audio and video streaming, *subject to speed limitations at peak times*.

Typically, the functionality explicitly excludes the following:

- video conferencing;
- VoIP clients and services; and
- other real time multimedia services, including TV, Video on Demand etc.
- 2. <u>Technical description</u>

The following table summarises the expected traffic handling capability (throughput). At peak times it is assumed the user traffic contends for network resources with traffic from a number of other users.

| Upstream Rate   | 128kbit/s maximum |
|-----------------|-------------------|
| Downstream Rate | 256kbit/s minimum |

The DSL service provider would commonly guarantee a number of network service level parameters, including:

- service availability;
- latency or average network response time;
- mean and maximum time to repair; and

- provisioning, maintenance and repair reporting.
- 3. <u>Service Handover</u>

Interconnect is provided through aggregation at an ATM Network Node Interface (NNI), utilising the appropriate ATM bearer service category (likely to be Variable Bit Rate – non real time).